Геометрические фигуры и их названия
Здесь вы с ребенком можете изучить геометрические фигуры и их названия с помощью веселых заданий в картинках. Но обучение будет проходить наиболее эффективно в том случае, если к распечатанному заданию вы добавите еще и различные образцы геометрических фигур. Для этой цели могут подойти такие предметы, как мячики, пирамидки, кубики, надутые воздушные шары (круглые и овальные), кружки для чая (стандартные, в форме цилиндра), апельсины, книги, клубки ниток, квадратные печенья и многое другое — все, что подскажет вам фантазия.
Все перечисленные предметы помогут ребенку понять, что значит объемная геометрическая фигура. Плоские фигуры можно подготовить, вырезав из бумаги нужные геометрические формы, предварительно раскрасив их в разные цвета.
Чем больше различных материалов вы подготовите для занятия, тем интереснее будет ребенку изучать новые для него понятия.
Также вам может понравиться наш онлайн тренажер по математике для 1 класса «Геометрические фигуры»:
Геометрические фигуры 1 класс — Онлайн-тренажер
Онлайн-тренажер по математике «Геометрические фигуры 1 класс» поможет первоклассникам потренироваться в умении различать основные геометрические фигуры: квадрат, круг, овал, прямоугольник и треугольник.
Геометрические фигуры и их названия — Проводим занятие с ребенком:
Чтобы легко и непринужденно ребенок смог запомнить геометрические фигуры и их названия, скачайте сначала картинку с заданием во вложениях внизу страницы, распечатайте на цветном принтере и положите на стол вместе с цветными карандашами. Также к этому времени у вас уже должны быть заготовлены различные предметы, которые мы перечисляли ранее.
- 1 этап. Сначала пусть ребенок выполнит задания на распечатанном листе — проговорит вслух названия фигур и раскрасит все картинки.
- 2 этап. Необходимо наглядно показать ребенку отличия объемных фигур от плоских. Для этого разложите все предметы-образцы (как объемные, так и вырезанные из бумаги) и отойдите с ребенком от стола на такое расстояние, с которого хорошо видны все объемные фигуры, но потерялись из виду все плоские образцы. Обратите внимание малыша на этот факт. Пусть он поэкспериментирует, подходя к столу то ближе, то дальше, рассказывая вам о своих наблюдениях.
- 3 этап. Дальше занятие нужно превратить в своеобразную игру. Попросите ребенка, чтобы он внимательно посмотрел вокруг себя и нашел предметы, которые имеют форму каких-либо геометрических фигур. Например, телевизор — прямоугольник, часы — круг и т.д. На каждой найденной фигуре — громко хлопайте в ладоши, чтобы добавить энтузиазма в игру.
- 4 этап. Проведите исследовательскую и наблюдательную работу с теми материалами-образцами, которые вы заготовили к занятию. Например, положите на стол книгу и плоский прямоугольник из бумаги. Предложите ребенку пощупать их, посмотреть на них с разных сторон и рассказать вам свои наблюдения. Таким же образом можно исследовать апельсин и бумажный круг, детскую пирамидку и бумажный треугольник, кубик и бумажный квадрат, воздушный шар овальной формы и овал, вырезанный из бумаги. Список предметов вы можете дополнить сами.
- 5 этап. Положите в непрозрачный пакет различные объемные образцы и попросите ребенка достать на ощупь квадратный предмет, затем круглый, затем прямоугольный и так далее.
- 6 этап. Разложите перед ребенком на столе несколько различных предметов из тех, которые участвуют в занятии. Затем пусть ребенок отвернется на несколько секунд, а вы спрячьте один из предметов. Повернувшись к столу ребенок должен назвать спрятанный предмет и его геометрическую форму.
Скачать геометрические фигуры и их названия — Бланк задания — вы можете во вложениях внизу страницы.
Названия геометрических фигур — Карточки для распечатки
Изучая с малышом геометрические фигуры, вы можете использовать во время занятий карточки для распечатки от Лисёнка Бибуши. Скачайте вложения, распечатайте на цветном принтере бланк с карточками, вырежьте каждую карточку по контуру – и приступайте к обучению. Карточки можно заламинировать, либо наклеить на более плотную бумагу, чтобы сохранить внешний вид картинок, ведь использоваться они будут неоднократно.
Первые шесть карточек дадут вам возможность изучить с ребенком такие фигуры: овал, круг, квадрат, ромб, прямоугольник и треугольник, под каждой фигурой в карточках можно прочесть ее название.
После того, как ребенок запомнил название определенной фигуры, попросите его выполнить следующее: обвести по контуру все имеющиеся на карточке образцы изучаемой фигуры, а затем раскрасить их в цвет основной фигуры, расположенной в верхнем левом углу.
Скачать названия геометрических фигур — Карточки для распечатки — вы можете во вложениях внизу страницы
Карточки для распечатки с изображением плоских геометрических фигур
С помощью следующих шести карточек ребенок сможет познакомиться с такими геометрическими фигурами: параллелограмм, трапеция, пятиугольник, шестиугольник, звезда и сердце. Как и в предыдущем материале под каждой фигурой можно найти ее название.
Чтобы разнообразить занятия с малышом, совмещайте обучение с рисованием – такой метод не даст ребенку переутомиться, и малыш с удовольствием будет продолжать учебу. Следите за тем, чтобы обводя фигуры по черточкам, ребенок не спешил и выполнял задание аккуратно, ведь подобные упражнения не только развивают мелкую моторику, они могут повлиять в дальнейшем на почерк малыша.
Скачать карточки для распечатки с изображением плоских геометрических фигур вы можете во вложениях
Объемные геометрические фигуры и их названия — скачать карточки
В процессе, того, как вы будете изучать с ребенком объемные геометрические фигуры и их названия, используя новые шесть карточек от Бибуши с изображениями куба, цилиндра, конуса, пирамиды, шара и полусферы, приобретите изучаемые фигуры в магазине, либо воспользуйтесь предметами, находящимися в доме, имеющими подобную форму.
Покажите малышу на примерах, как в жизни выглядят объемные фигуры, ребенок должен потрогать и поиграть с ними. Прежде всего, это необходимо для того, чтобы задействовать наглядно – действенное мышление малыша, с помощью которого ребенку проще познавать окружающий мир.
Скачать — Объемные геометрические фигуры и их названия — вы можете во вложениях внизу страницы
Также вам будут полезны и другие материалы по изучению геометрических фигур:
Рисунки из геометрических фигур — Задания в картинках и раскраски
Веселые и красочные задания для детей «Рисунки из геометрических фигур» являются очень удобным обучающим материалом для детей дошкольного и младшего школьного возраста по изучению и запоминанию основных геометрических форм:
Геометрические фигуры — Раскраска для дошкольников
Задания ознакомят ребенка с основными фигурами геометрии — кругом, овалом, квадратом, прямоугольником и треугольником. Только здесь не занудное зазубривание названий фигур, а своеобразная игра-раскраска.
Плоские геометрические фигуры — Обведи и дорисуй
Как правило, геометрию начинают изучать, рисуя плоские геометрические фигуры. Восприятие правильной геометрической формы невозможно без выведения ее своими руками на листе бумаги.
Найди формы геометрических фигур в картинках
Это занятие изрядно позабавит ваших юных математиков. Ведь теперь им придется находить знакомые формы геометрических фигур среди множества картинок.
Наложение фигур друг на друга — Задание для детей
Наложение фигур друг на друга — это занятие по геометрии для дошкольников и младших школьников. Смысл упражнения состоит в решении примеров на сложение. Только это необычные примеры. Вместо цифр здесь нужно складывать геометрические фигуры.
Свойства геометрических фигур для дошкольников
Это задание составлено в виде игры, в которой ребенку предстоит менять свойства геометрических фигур: форму, цвет или размер.
Счет геометрических фигур — Картинки с заданиями
Здесь вы можете скачать задания в картинках, в которых представлен счет геометрических фигур для занятий по математике.
Чертежи геометрических тел — Задание для детей
В этом задании ребенок познакомится с таким понятием, как чертежи геометрических тел. По сути, это занятие представляет собой мини-урок по начертательной геометрии
Геометрические фигуры из бумаги — Вырезаем и занимаемся
Здесь мы подготовили для вас объемные геометрические фигуры из бумаги, которые нужно вырезать и склеить. Куб, пирамиды, ромб, конус, цилиндр, шестигранник, распечатать их на картоне (или цветной бумаге, а затем наклеить на картон), а затем дать ребенку для запоминания.
Счет до 5 — Картинки с заданиями для малышей
Здесь мы выложили для вас счет до 5 — картинки с математическими заданиями для малышей, благодаря которым ваши дети потренируют не только свои навыки счета, но и умение читать, писать, различать геометрические фигуры, рисовать и раскрашивать.
И еще можете поиграть в математические игры онлайн от лисенка Бибуши:
Игра «Что лишнее? — Геометрические формы»
В этой развивающей онлайн игре ребенку предстоит определить, что является лишним среди 4 картинок. При этом необходимо руководствоваться признаками геометрических форм.
§ Геометрические фигуры на плоскости. Прямоугольник, квадрат, треугольник, многоугольник, круг и окружность
Прямоугольник
Запомните!Прямоугольник — это фигура, которая имеет четыре стороны и четыре прямых угла.
У прямоугольника противоположные стороны равны.
В геометрии прямоугольник обозначают четырьмя заглавными латинскими буквами.
Противоположные стороны прямоугольника ABCD: AB = CD, BC = DA.
Углы:ABC = BCD = CDA = DAB = 90° — все углы прямые.
Квадрат
Запомните!Квадрат — это прямоугольник, у которого все стороны равны.
В геометрии квадрат, также как и прямоугольник, обозначают четырьмя большими латинскими буквами.
Стороны квадрата KLFM: KL = LF = FM = MK.
Углы: KLF = LFM = FMK = MKL = 90° — все углы прямые.
На нашем сайте вы можете проверить свои вычисления, используя калькулятор расчёта периметра и площади квадрата онлайн.
Треугольник
Запомните!Треугольник — это геометрическая фигура, которая имеет три стороны и три угла (вершины треугольника).
Треугольник обозначается тремя заглавными латинскими буквами, перед которыми ставится знак:
Треугольник EFG сокращенно обозначается как EFG.
Виды треугольников
Вид треугольника | Пример |
---|---|
Прямоугольный (Один угол прямой, два других острых) | |
Остроугольный (Все углы острые) | |
Тупоугольный (Один угол тупой, два других — острые) |
Многоугольник
Запомните!Многоугольники — это геометрические фигуры различной формы.
Вершины многоугольника — это точки, соединяющие отрезки, из которых состоит многоугольник.
Стороны многоугольника — это отрезки, из которых состоит многоугольник.
Многоугольник ELNFK.
- Вершины многоугольника — E, L, F, N, K.
- Стороны многоугольника — EL, LN, NF, FK, KE.
Окружность. Круг
Запомните!Окружность — это геометрическая фигура, образованная замкнутой кривой линией, все точки которой находятся на одинаковом расстоянии от центра.
Круг — это геометрическая фигура, которая ограничена окружностью.
Окружность — это граница круга.
Радиус круга — это расстояние от центра окружности до любой её точки.
Диаметр круга — это отрезок, который соединяет две точки окружности и проходит через её центр.
Диаметр круга равен двум его радиусам.
- Точка O — центр круга.
- AB — диаметр круга (обозначается буквой «d»).
- OK — радиус круга (обозначается буквой «r»).
- АB = 2OK
Геометрические фигуры четырехугольники. Четырехугольники все правила
Одна из наиболее интересных тем по геометрии из школьного курса — это «Четырехугольники» (8 класс). Какие виды таких фигур существуют, какими особыми свойствами они обладают? В чем уникальность четырехугольников с углами по девяносто градусов? Давайте разберемся во всем этом.
Какая геометрическая фигура называется четырехугольником
Многоугольники, которые состоят из четырех сторон и, соответственно, из четырех вершин (углов), называются в евклидовой геометрии четырехугольниками.
Интересна история названия этого вида фигур. В российском языке существительное «четырехугольник» образовано от словосочетания «четыре угла» (точно так же, как «треугольник» — три угла, «пятиугольник» — пять углов и т. п.).
Однако на латыни (через посредничество которой пришли многие геометрические термины в большинство языков мира) он называется quadrilateral. Это слово образовано из числительного quadri (четыре) и существительного latus (сторона). Так что можно сделать вывод, что у древних этот многоугольник именовался не иначе как «четырехсторонник».
Кстати, такое название (с упором на наличие у фигур этого вида четырех сторон, а не углов) сохранилось в некоторых современных языках. Например, в английском — quadrilateral и в французском — quadrilatère.
При этом в большинстве славянских языков рассматриваемый вид фигур идентифицируют все так же по количеству углов, а не сторон. Например, в словацком (štvoruholník), в болгарском («четириъгълник»), в белорусском («чатырохкутнік»), в украинском («чотирикутник»), в чешском (čtyřúhelník), но в польском четырехугольник именуют по количеству сторон — czworoboczny.
Какие виды четырехугольников изучаются в школьной программе
В современной геометрии выделяются 4 вида многоугольников с четырьмя сторонами.
Однако из-за слишком сложных свойств некоторых из них на уроках геометрии школьников знакомят только с двумя видами.
- Параллелограмм (parallelogram). Противолежащие стороны четырехугольника такого попарно параллельны между собой и, соответственно, равны также попарно.
- Трапеция (trapezium или trapezoid). Этот четырехугольник состоит из двух противолежащих сторон, параллельных между собой. Однако другая пара сторон не имеет такой особенности.
Не изучаемые в школьном курсе геометрии виды четырехугольников
Помимо вышеперечисленных, существуют еще два вида четырехугольников, с которыми школьников не знакомят на уроках геометрии, из-за их особой сложности.
- Дельтоид (kite) — фигура, в которой каждая из двух пар смежных сторон равна по длине между собою. Свое название такой четырехугольник получил из-за того, что по внешнему виду он довольно сильно напоминает букву греческого алфавита — «дельта».
- Антипараллелограмм (antiparallelogram) — эта фигура так же сложна, как и ее название. В ней две противоположные стороны равны, но при этом они не параллельны между собою. Кроме того, длинные противоположные стороны этого четырехугольника пересекаются между собой, как и продолжения двух других, более коротких сторон.
Виды параллелограмма
Разобравшись с основными видами четырехугольников, стоит обратить внимание на его подвиды. Так, все параллелограммы, в свою очередь, тоже делятся на четыре группы.
- Классический параллелограмм.
- Ромб (rhombus) — четырехугольная фигура с равными сторонами. Ее диагонали пересекаются под прямым углом, деля ромб на четыре равных прямоугольных треугольника.
- Прямоугольник (rectangle). Название это говорит само за себя. Так как это четырехугольник с прямыми углами (каждый из них равен девяноста градусам). Противоположные стороны его не только параллельны между собою, но и равны.
- Квадрат (square). Как и прямоугольник, это четырехугольник с прямыми углами, но у него все стороны равны между собой. Этим данная фигура близка к ромбу. Так что можно утверждать, что квадрат — это нечто среднее между ромбом и прямоугольником.
Особые свойства прямоугольника
Рассматривая фигуры, в которых каждый из углов между сторонами, равен девяноста градусам, стоит более внимательно остановиться на прямоугольнике. Итак, какими особенными он обладает признаками, отличающими его от других параллелограммов?
Чтобы утверждать, что рассматриваемый параллелограмм — прямоугольник, его диагонали должны быть равны между собою, а каждый из углов — прямыми. Кроме того, квадрат его диагоналей должен соответствовать сумме квадратов двух смежных сторон этой фигуры. Иными словами, классический прямоугольник состоит из двух прямоугольных треугольников, а в них, как известно, В роли гипотенузы выступает диагональ рассматриваемого четырехугольника.
Последний из перечисленных признаков этой фигуры является также ее особенным свойством. Помимо этого, есть и другие. Например, то, что все стороны изучаемого четырехугольника с прямыми углами — это одновременно и его высоты.
Кроме того, если вокруг любого прямоугольника начертить круг, его диаметр будет равен диагонали вписанной фигуры.
Среди других свойств четырехугольника этого, то, что он является плоским и в неевклидовой геометрии не существует. Это связано с тем, что в такой системе отсутствуют четырехугольные фигуры, сумма углов которых равна трехстах шестидесяти градусам.
Квадрат и его особенности
Разобравшись с признаками и свойствами прямоугольника, стоит обратить внимание на второй известный науке четырехугольник с прямыми углами (это квадрат).
Являясь по факту тем же прямоугольником, но с равными сторонами, эта фигура обладает всеми его свойствами. Но в отличие от него, квадрат присутствует в неевклидовой геометрии.
Кроме этого, у данной фигуры, есть и другие собственные отличительные черты. Например, то, что диагонали квадрата не просто равны между собою, но и пересекаются под прямым углом. Таким образом, как и ромб, квадрат состоит из четырех прямоугольных треугольников, на которые ее делят диагонали.
Помимо этого, данная фигура является самой симметричным среди всех четырехугольников.
Чему равна сумма углов четырехугольника
Рассматривая особенности четырехугольников евклидовой геометрии, стоит обратить внимание на их углы.
Так, в каждой из вышеперечисленных фигур, независимо от того, есть у нее прямые углы или нет, общая сумма их всегда одинакова — триста шестьдесят градусов. Это уникальная отличительная черта этого вида фигур.
Периметр четырехугольников
Разобравшись с тем, чему равна сумма углов четырехугольника и другими особенными свойствами фигур этого вида, стоит узнать, какими формулами лучше всего пользоваться, чтобы вычислить их периметр и площадь.
Чтобы определить периметр любого четырехугольника, нужно лишь сложить между собою длину всех его сторон.
Например, в фигуре KLMN ее периметр можно вычислить по формуле: Р = KL + LM + MN + KN. Если подставить сюда числа, получится: 6 + 8 + 6 + 8 = 28 (см).
В случае когда рассматриваемая фигура — это ромб или квадрат, для нахождения периметра можно упростить формулу, просто помножив длину одной из его сторон на четыре: Р = KL х 4. Например: 6 х 4=24 (см).
Формулы четырехугольников площади
Разобравшись с тем, как найти периметр любого фигуры с четырьмя углами и сторонами, стоит рассмотреть наиболее популярные и простые способы нахождения ее площади.
Другие свойства четырехугольников: вписанные и описанные окружности
Рассмотрев особенности и свойства четырехугольника как фигуры евклидовой геометрии, стоит обратить внимание на возможность описывать вокруг или вписывать внутри него круги:
- Если суммы противолежащих углов фигуры составляют по сто восемьдесят градусов и попарно равны между собою, то вокруг такого четырехугольника можно свободно описать окружность.
- Согласно теореме Птолемея, если снаружи многоугольника с четырьмя сторонами описан круг, то произведение его диагоналей равно сумме произведений противоположных сторон данной фигуры. Таким образом, формула будет выглядеть так: КМ х LN = KL х MN + LM х KN.
- Если построить четырехугольник, в котором суммы противоположных сторон равны между собою, то в него можно вписать круг.
Разобравшись с тем, что такое четырехугольник, что за виды его существуют, какие из них имеют только прямые углы между сторонами и какими свойствами они обладают, стоит запомнить весь этот материал. В особенности формулы нахождения периметра и площади рассмотренных многоугольников. Ведь фигуры такой формы — одни из самых распространенных, и эти знания могут пригодиться для вычислений в реальной жизни.
Определение. Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.
Свойство. В параллелограмме противоположные стороны равны и противоположные углы равны.
Свойство. Диагонали параллелограмма точкой пересечения делятся пополам.
1 признак параллелограмма. Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник — параллелограмм.
2 признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
3 признак параллелограмма. Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Определение. Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны называются основаниями.
Трапеция называется равнобедренной (равнобочной) , если ее боковые стороны равны. В равнобедренной трапеции углы при основаниях равны.
прямоугольной .
средней линией трапеции . Средняя линия параллельна основаниям и равна их полусумме.
Прямоугольник
Определение.
Свойство. Диагонали прямоугольника равны.
Признак прямоугольника. Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
Определение.
Свойство. Диагонали ромба взаимно перпендикулярны и делят его углы пополам.
Определение.
Квадрат есть частный вид прямоугольника, а также частный вид ромба. Поэтому он имеет все их свойства.
Свойства:
1. Все углы квадрата прямые
Четырехугольники все правила
Ключевые слова:
четырехугольник, выпуклый, сумма углов, площадь четырехугольника
Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.
- Вершины четырехугольника называются соседними , если они являются концами одной из его сторон.
- Вершины, не являющиеся соседними, называются противоположними .
- Отрезки, соединяющие противолежащие вершины четырехугольника, называются диагоналями .
- Стороны четырехугольника, исходящие из одной вершины, называются соседними сторонами.
- Стороны, не имеющие общего конца, называются противолежащими сторонами.
- Четырехугольник называется выпуклым , если он расположен в одной полуплоскости относительно прямой, содержащей любую его сторону.
Виды четырехугольников
- Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны
- Прямоугольник — параллелограмм, у которого все углы прямые
- Ромб — параллелограмм, у которого все стороны равны
- Квадрат — прямоугольник, у которого все стороны равны
- Трапеция — четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны
- Дельтоид — четырехугольник, у которого две пары смежных сторон равны
Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не лежат на одной прямой, а соединяющие их отрезки не пересекаются.
противоположными. противоположными.
Виды четырёхугольников ПараллелограммПараллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны.
Свойства параллелограмма- противолежащие стороны равны;
- противоположные углы равны;
- сумма квадратов диагоналей равна сумме квадратов всех сторон:
Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие непараллельны.
Параллельные стороны трапеции называются ее основаниями, а непараллельные стороны — боковыми сторонами. Отрезок, соединяющий середины боковых сторон, называется средней линией.
Трапеция называется равнобедренной (или равнобокой ), если ее боковые стороны равны.
Трапеция, один из углов которой прямой, называется прямоугольной.
Свойства трапеции Признаки трапеции ПрямоугольникПрямоугольником называется параллелограмм, у которого все углы прямые.
Свойства прямоугольника
Признаки прямоугольникаПараллелограмм является прямоугольником, если:
- Один из его углов прямой.
- Его диагонали равны.
Ромбом называется параллелограмм, у которого все стороны равны.
Свойства ромба- все свойства параллелограмма;
- диагонали перпендикулярны;
Квадратом называется прямоугольник, у которого все стороны равны.
Свойства квадрата- все углы квадрата прямые;
- диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.
S =d 1 d 2 sin
Параллелограмм
a и b — смежные стороны; — угол между ними; h a — высота, проведенная к стороне a .
S = ab sin
S =d 1 d 2 sin
Трапеция
a и b — основания; h — расстояние между ними; l — средняя линия.
Прямоугольник
S =d 1 d 2 sin
S = a 2 sin
S =d 1 d 2
Квадрат
d — диагональ.
www.univer.omsk.su
Свойства четырехугольников. Виды четырехугольников. Свойства произвольных четырехугольников. Свойства параллелограмма. Свойства ромба. Свойства прямоугольника. Свойства квадрата. Свойства трапеции. Примерно 7-9 класс (13-15 лет)
Свойства четырехугольников. Виды четырехугольников. Свойства произвольных четырехугольников.
Свойства параллелограмма. Свойства ромба. Свойства прямоугольника. Свойства квадрата. Свойства трапеции.
Виды четырехугольников:
- Параллелограмм — это четырехугольник у которого противолежащие стороны параллельны
- Ромб — это параллелограмм, у которого все стороны равны.
- Прямоугольник — это параллелограмм, у которого все углы прямые.
- Квадрат — это прямоугольник, у которого все стороны равны.
Свойства произвольных четырехугольников:
Свойства параллелограмма:
Свойства ромба:
Свойства прямоугольника:
Свойства квадрата:
Свойства трапеции:
Консультации и техническая
поддержка сайта: Zavarka Team
Четырехугольники все правила
Неевклидова геометрия, геометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов (1825) явилось значительным событием в истории мысли, ибо послужило первым шагом на пути ктеории относительности.
Второй постулат Евклида утверждает, что любой отрезок прямой можно неограниченно продолжить . Евклид, по-видимому, считал, что этот постулат содержит в себе и утверждение, что прямая имеет бесконечную длину. Однако в «эллиптической» геометрии любая прямая конечна и, подобно окружности, замкнута.
Пятый постулат утверждает, что если прямая пересекает две данные прямые так, что два внутренних угла по одну сторону от нее в сумме меньше двух прямых углов, то эти две прямые, если продолжить их неограниченно, пересекутся с той стороны, где сумма этих углов меньше суммы двух прямых. Но в «гиперболической» геометрии может существовать прямая CB (см. рис.), перпендикулярная в точке С к заданной прямой r и пересекающая другую прямую s под острым углом в точке B, но, тем не менее бесконечные прямые r и s никогда не пересекутся.
Из этих пересмотренных постулатов следовало, что сумма углов треугольника, равная 180° в евклидовой геометрии, больше 180° в эллиптической геометрии и меньше 180° в гиперболической геометрии.
Четырёхугольник
Четырёхугольник — это многоугольник, содержащий четыре вершины и четыре стороны.
Четырёхугольник , геометрическая фигура — многоугольник с четырьмя углами, а также всякий предмет, устройство такой формы.
Две несмежные стороны четырехугольника называются противоположными. Две вершины, не являющиеся соседними, называются также противоположными.
Четырехугольники бывают выпуклые (как ABCD) и
невыпуклые (A 1 B 1 C 1 D 1).
Виды четырёхугольников
- Параллелограмм — четырёхугольник, у которого все противоположные стороны параллельны;
- Прямоугольник — четырёхугольник, у которого все углы прямые;
- Ромб — четырёхугольник, у которого все стороны равны;
- Квадрат — четырёхугольник, у которого все углы прямые и все стороны равны;
- Трапеция — четырёхугольник, у которого две противоположные стороны параллельны;
- Дельтоид — четырёхугольник, у которого две пары смежных сторон равны.
Параллелограмм
Параллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны.
Параллелогра́мм (от греч. parallelos — параллельный и gramme — линия) т. е. лежат на параллельных прямых. Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.
- противолежащие стороны равны;
- противоположные углы равны;
- диагонали точкой пересечения делятся пополам;
- сумма углов, прилежащих к одной стороне, равна 180°;
- сумма квадратов диагоналей равна сумме квадратов всех сторон.
Четырехугольник является параллелограммом, если:
- Две его противоположные стороны равны и параллельны.
- Противоположные стороны попарно равны.
- Противоположные углы попарно равны.
- Диагонали точкой пересечения делятся пополам.
Прямоугольник
Прямоугольником называется параллелограмм, у которого все углы прямые.
- противолежащие стороны равны;
- противоположные углы равны;
- диагонали точкой пересечения делятся пополам;
- сумма углов, прилежащих к одной стороне, равна 180°;
- диагонали равны.
Параллелограмм является прямоугольником, если:
- Один из его углов прямой.
- Его диагонали равны.
Ромбом называется параллелограмм, у которого все стороны равны.
- противолежащие стороны равны;
- противоположные углы равны;
- диагонали точкой пересечения делятся пополам;
- сумма углов, прилежащих к одной стороне, равна 180°;
- сумма квадратов диагоналей равна сумме квадратов всех сторон;
- диагонали перпендикулярны;
- диагонали являются биссектрисами его углов.
Параллелограмм является ромбом, если:
- Две его смежные стороны равны.
- Его диагонали перпендикулярны.
- Одна из диагоналей является биссектрисой его угла.
Квадратом называется прямоугольник, у которого все стороны равны.
- все углы квадрата прямые;
- диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.
- Прямоугольник является квадратом, если он обладает каким-нибудь признаком ромба.
Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие непараллельны.
Параллельные стороны трапеции называются ее основаниями, а непараллельные стороны — боковыми сторонами. Отрезок, соединяющий середины боковых сторон, называется средней линией.
Трапеция называется равнобедренной (или равнобокой), если ее боковые стороны равны.
Трапеция, один из углов которой прямой, называется прямоугольной.
- ее средняя линия параллельна основаниям и равна их полусумме;
- если трапеция равнобокая, то ее диагонали равны и углы при основании равны;
- если трапеция равнобокая, то около нее можно описать окружность;
- если сумма оснований равна сумме боковых сторон, то в нее можно вписать окружность.
- Четырехугольник является трапецией, если его параллельные стороны не равны
Дельтоид — четырёхугольник, обладающий двумя парами сторон одинаковой длины. В отличие от параллелограмма, равными являются не противоположные, а две пары смежных сторон. Дельтоид имеет форму, похожую на воздушного змея.
- Углы между сторонами неравной длины равны.
- Диагонали дельтоида (или их продолжения) пересекаются под прямым углом.
- В любой выпуклый дельтоид можно вписать окружность, кроме этого, если дельтоид не является ромбом, то существует ещё одна окружность, касающаяся продолжений всех четырёх сторон. Для невыпуклого дельтоида можно построить окружность, касающуюся двух бо́льших сторон и продолжений двух меньших сторон и окружность, касающуюся двух меньших сторон и продолжений двух больших сторон.
- Если угол между неравными сторонами дельтоида прямой, то в него можно вписать окружность (описанный дельтоид).
- Если пара противоположных сторон дельтоида равны, то такой дельтоид является ромбом.
- Если пара противоположных сторон и обе диагонали дельтоида равны, то дельтоид является квадратом. Квадратом является и вписанный дельтоид с равными диагоналями.
Возникновение геометрии восходит к глубокой древности и было обусловлено практическими потребностями человеческой деятельности (необходимостью измерения земельных участков, измерения объемов различных тел и т. д.).
Простейшие геометрические сведения и понятия были известны еще в Древнем Египте. В этот период геометрические утверждения формулировались в виде правил, даваемых без доказательств.
С VII века до н. э. по I век н. э. геометрия как наука бурно развивалась в Древней Греции. В этот период происходило не только накопление различных геометрических сведений, но и отрабатывалась методика доказательств геометрических утверждений, а также делались первые попытки сформулировать основные первичные положения (аксиомы) геометрии, из которых чисто логическими рассуждениями выводится множество различных геометрических утверждений. Уровень развития геометрии в Древней Греции отражен в сочинении Евклида «Начала».
В этой книге впервые была сделана попытка дать систематическое построение планиметрии на базе основных неопределяемых геометрических понятий и аксиом (постулатов).
Особое место в истории математики занимает пятый постулат Евклида (аксиома о параллельных прямых). Долгое время математики безуспешно пытались вывести пятый постулат из остальных постулатов Евклида и лишь в середине XIX века благодаря исследованиям Н. И. Лобачевского, Б. Римана и Я. Бойяи стало ясно, что пятый постулат не может быть выведен из остальных, а система аксиом, предложенная Евклидом, не единственно возможная.
«Начала» Евклида оказали огромное влияние на развитие математики. Эта книга на протяжении более чем двух тысяч лет была не только учебником по геометрии, но и служила отправным пунктом для очень многих математических исследований, в результате которых возникли новые самостоятельные разделы математики.
Систематическое построение геометрии обычно производится по следующему плану:
I. Перечисляются основные геометрические понятия, которые вводятся без определений.
II. Дается формулировка аксиом геометрии.
III. На основе аксиом и основных геометрических понятий формулируются остальные геометрические понятия и теоремы.
- Происхождение названия Неевклидовой геометрии?
- Какаие фигуры называются четырёхугольниками?
- Свойства паралелограмма?
- Виды четырехугольников?
Список использованных источников
- А.Г. Цыпкин. Справочник по математике
- «Единый государственный экзамен 2006. Математика. Учебно-тренировочные материалы для подготовки учащихся/ Рособрнадзор, ИСОП – М.: Интеллект-Центр, 2006»
- Мазур К. И. «Решение основных конкурсных задач по математике сборника под редакцией М. И. Сканави»
Над уроком работали
Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме , где на международном уровне собирается образовательный совет свежей мысли и действия. Создав блог, Вы не только повысите свой статус, как компетентного преподавателя, а и сделаете весомый вклад в развитие школы будущего. Гильдия Лидеров Образования открывает двери для специалистов высшего ранга и приглашает к сотрудничеству в направлении создания лучших в мире школ.
Популярное:
- Статья 282. Возбуждение ненависти либо вражды, а равно унижение человеческого достоинства (в редакции Федерального закона от 08.12.2003 N 162-ФЗ) ч 1. Действия, направленные на возбуждение ненависти либо вражды, а также на […]
- Калькулятор налога на имущество организаций Как рассчитать налог на имущество организаций Форма расчета по авансовым платежам изменилась. Начиная с отчетности за первое полугодие 2017, расчет налога на имущество организаций […]
- Законы экологии За более чем 100-летний период разностороннего изучения популяций и сообществ накоплено огромное количество фактов. Среди них — большое число, отражающих случайные или нерегулярные явления и процессы. Но не […]
- Варианты пенсионного обеспечения в системе обязательного пенсионного страхования До конца 2015 года граждане 1967 года рождения и моложе могли выбрать: продолжить формировать пенсионные накопления или отказаться от накопительной […]
- Приказ минсельхоза 549 Зарегистрировано в Минюсте РФ 5 марта 2009 г. N 13476 МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ от 16 декабря 2008 г. N 532 ОБ УТВЕРЖДЕНИИ КЛАССИФИКАЦИИ ПРИРОДНОЙ ПОЖАРНОЙ ОПАСНОСТИ ЛЕСОВ И […]
- Повышение пенсии детям инвалидам с 1 января 2018 года Пенсионное обеспечение граждан является обязанностью, возложенной на государство. Так указано в своде законов страны – в Конституции. Среди инвалидов, которым необходима […]
- Правило внутреннего распорядка оао ржд ОАО «РОССИЙСКИЕ ЖЕЛЕЗНЫЕ ДОРОГИ» ПРИКАЗ от 26 июля 2012 г. N 87 ОБ УТВЕРЖДЕНИИ ПРАВИЛ ВНУТРЕННЕГО ТРУДОВОГО РАСПОРЯДКА РЕГИОНАЛЬНЫХ СЛУЖБ (ОТДЕЛА) РАЗВИТИЯ ПАССАЖИРСКИХ СООБЩЕНИЙ И […]
- Закон 3 стадий конта Позитивизм как философское течение исходит из представлений о том, что основной массив знаний о мире, человеке и обществе получается в специальных науках, что «позитивная» наука должна отказаться от попыток […]
Тема урока
- Определение четырехугольника.
Цели урока
- Образовательные – повторение, обобщение и проверка знаний по теме: “Четырехугольника”; выработка основных навыков.
- Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
- Воспитательные — посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.
Задачи урока
- Формировать навыки в построении четырехугольника с помощью масштабной линейки и чертежного треугольника.
- Проверить умение учащихся решать задачи.
План урока
- Историческая справка. Неевклидова геометрия.
- Четырёхугольник.
- Виды четырёхугольников.
Неевклидова геометрия
Неевклидова геометрия, геометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов (1825) явилось значительным событием в истории мысли, ибо послужило первым шагом на пути ктеории относительности.
Второй постулат Евклида утверждает, что любой отрезок прямой можно неограниченно продолжить . Евклид, по-видимому, считал, что этот постулат содержит в себе и утверждение, что прямая имеет бесконечную длину. Однако в «эллиптической» геометрии любая прямая конечна и, подобно окружности, замкнута.
Пятый постулат утверждает, что если прямая пересекает две данные прямые так, что два внутренних угла по одну сторону от нее в сумме меньше двух прямых углов, то эти две прямые, если продолжить их неограниченно, пересекутся с той стороны, где сумма этих углов меньше суммы двух прямых. Но в «гиперболической» геометрии может существовать прямая CB (см. рис.), перпендикулярная в точке С к заданной прямой r и пересекающая другую прямую s под острым углом в точке B, но, тем не менее бесконечные прямые r и s никогда не пересекутся.
Из этих пересмотренных постулатов следовало, что сумма углов треугольника, равная 180° в евклидовой геометрии, больше 180° в эллиптической геометрии и меньше 180° в гиперболической геометрии.
Четырёхугольник
Предмети > Математика > Математика 8 классВ школьной программе на уроках геометрии приходится иметь дело с разнообразными видами четырёхугольников: ромбами, параллелограммами, прямоугольниками, трапециями, квадратами. Самыми первыми фигурами для изучения становятся прямоугольник и квадрат.
Итак, что же такое прямоугольник? Определение для 2 класса общеобразовательной школы будет выглядеть так: это четырёхугольник, у которого все четыре угла прямые. Несложно представить себе, как выглядит прямоугольник: это фигура с 4 прямыми углами и сторонами, попарно параллельными друг другу.
Вконтакте
Как понять, решая очередную геометрическую задачу, с каким именно четырёхугольником мы имеем дело? Существуют три основных признака , по которым можно безошибочно определить, что речь идёт именно о прямоугольнике. Назовём их:
- фигура является четырёхугольником, три угла которого равны 90°;
- представленный четырёхугольник — это параллелограмм с равными диагоналями;
- параллелограмм, который имеет по крайней мере один прямой угол.
Интересно знать: что такое выпуклый , его особенности и признаки.
Поскольку прямоугольник — это параллелограмм (т. е. четырёхугольник с попарно параллельными противоположными сторонами), то для него будут выполняться все его свойства и признаки.
Формулы для вычисления длины сторон
В прямоугольнике противолежащие стороны равны и взаимно параллельны. Более длинную сторону принято называть длиной (обозначается a), более короткую — шириной (обозначается b). В прямоугольнике на изображении длинами являются стороны AB и CD, а шириной — AC и B. D. Также они перпендикулярны к основаниям (т. е. являются высотами).
Для нахождения сторон можно воспользоваться формулами, указанными ниже. В них приняты условные обозначения: a — длина прямоугольника, b — его ширина, d — диагональ (отрезок, соединяющий вершины двух углов, лежащих друг напротив друга), S — площадь фигуры, P — периметр, α — угол между диагональю и длиной, β — острый угол, который образован обеими диагоналями. Способы нахождения длин сторон:
- С использованием диагонали и известной стороны: a = √(d ² — b ²), b = √(d ² — a ²).
- По площади фигуры и одной из её сторон: a = S / b, b = S / a.
- При помощи периметра и известной стороны: a = (P — 2 b) / 2, b = (P — 2 a) / 2.
- Через диагональ и угол между ней и длиной: a = d sinα, b = d cosα.
- Через диагональ и угол β: a = d sin 0,5 β, b = d cos 0,5 β.
Периметр и площадь
Периметром четырёхугольника называют сумму длин всех его сторон. Чтобы вычислить периметр, могут использоваться следующие формулы:
- Через обе стороны: P = 2 (a + b).
- Через площадь и одну из сторон: P = (2S + 2a ²) / a, P = (2S + 2b ²) / b.
Площадь — это пространство, ограниченное периметром . Три основных способа для расчёта площади:
- Через длины обеих сторон: S = a*b.
- При помощи периметра и какой-либо одной известной стороны: S = (Pa — 2 a ²) / 2; S = (Pb — 2 b ²) / 2.
- По диагонали и углу β: S = 0,5 d ² sinβ.
В задачах школьного курса математики часто требуется хорошо владеть свойствами диагоналей прямоугольника . Перечислим основные из них:
- Диагонали равны друг другу и делятся на два равных отрезка в точке их пересечения.
- Диагональ определяется как корень суммы обеих сторон, возведённых в квадрат (следует из теоремы Пифагора).
- Диагональ разделяет прямоугольник на два треугольника с прямым углом.
- Точка пересечения совпадает с центром описанной окружности, а сами диагонали — с её диаметром.
Применяются следующие формулы для расчёта длины диагонали:
- С использованием длины и ширины фигуры: d = √(a ² + b ²).
- С использованием радиуса окружности, описанной вокруг четырёхугольника: d = 2 R.
Определение и свойства квадрата
Квадрат — это частный случай ромба, параллелограмма или прямоугольника. Его отличие от этих фигур заключается в том, что все его углы прямые, и все четыре стороны равны. Квадрат — это правильный четырёхугольник.
Четырёхугольник называют квадратом в следующих случаях:
- Если это прямоугольник, у которого длина a и ширина b равны.
- Если это ромб с равными длинами диагоналей и с четырьмя прямыми углами.
К свойствам квадрата относятся все ранее рассмотренные свойства, относящиеся к прямоугольнику, а также следующие:
- Диагонали перпендикулярны относительно друг друга (свойство ромба).
- Точка пересечения совпадает с центром вписанной окружности.
- Обе диагонали делят четырёхугольник на четыре одинаковых прямоугольных и равнобедренных треугольника.
Приведём часто используемые формулы для вычисления периметра, площади и элементов квадрата:
- Диагональ d = a √2.
- Периметр P = 4 a.
- Площадь S = a ².
- Радиус описанной окружности вдвое меньше диагонали: R = 0,5 a √2.
- Радиус вписанной окружности определяется как половинная длина стороны: r = a / 2.
Примеры вопросов и задач
Разберём некоторые вопросы, с которыми можно столкнуться при изучении курса математики в школе, и решим несколько простых задач.
Задача 1 . Как изменится площадь прямоугольника, если увеличить длину его сторон в три раза?
Решение: Обозначим площадь исходной фигуры S0, а площадь четырёхугольника с утроенной длиной сторон — S1. По формуле, рассмотренной ранее, получаем: S0 = ab. Теперь увеличим длину и ширину в 3 раза и запишем: S1= 3 a 3 b = 9 ab. Сравнивая S0 и S1, становится очевидно, что вторая площадь больше первой в 9 раз.
Вопрос 1. Четырёхугольник с прямыми углами — это квадрат?
Решение: Из определения следует, что фигура с прямыми углами является квадратом лишь тогда, когда длины всех его сторон равны. В остальных случаях фигура является прямоугольником.
Задача 2 . Диагонали прямоугольника образуют угол 60 градусов. Ширина прямоугольника — 8. Рассчитать, чему равна диагональ.
Решение: Вспомним, что диагонали точкой пересечения разделяются пополам. Таким образом, имеем дело с равнобедренным треугольником с углом при вершине, равным 60°. Так как треугольник равнобедренный, то находящиеся при основании углы тоже будут одинаковы. Путём несложных вычислений получаем, что каждый из них равен 60°. Отсюда следует, что треугольник равносторонний. Ширина, известная нам, является основанием треугольника, следовательно, половина диагонали тоже равна 8, а длина целой диагонали в два раза больше и равна 16.
Вопрос 2. У прямоугольника все стороны равны или нет?
Решение: Достаточно вспомнить, что все стороны должны быть равны у квадрата, который является частным случаем прямоугольника. Во всех остальных случаях достаточное условие — это наличие минимум 3 прямых углов. Равенство сторон не является обязательным признаком.
Задача 3 . Площадь квадрата известна и равна 289. Найти радиусы вписанной и описанной окружности.
Решение: По формулам для квадрата проведём следующие расчёты:
- Определим, чему равны основные элементы квадрата: a = √ S = √289 = 17; d = a √2 =1 7√2.
- Подсчитаем, чему равен радиус описанной вокруг четырёхугольника окружности: R = 0,5 d = 8,5√2.
- Найдём радиус вписанной окружности: r = a / 2 = 17 / 2 = 8,5.
С четырьмя углами и четырьмя сторонами. Четырёхугольник образуется замкнутой ломаной линией, состоящей из четырёх звеньев, и той частью плоскости, которая находится внутри ломаной.
Обозначение четырёхугольника составляют из букв, стоящих при его вершинах, называя их по порядку. Например, говорят или пишут: четырёхугольник ABCD :
В четырёхугольнике ABCD точки A , B , C и D — это вершины четырёхугольника , отрезки AB , BC , CD и DA — стороны .
Вершины, принадлежащие одной стороне, называются соседними , вершины, не являющиеся соседними, называются противолежащими :
В четырёхугольнике ABCD вершины A и B , B и C , C и D , D и A — соседние, а вершины A и C , B и D — противолежащие. Углы, лежащие при соседних вершинах, также называются соседними, а при противолежащих вершинах — противолежащими.
Стороны четырёхугольника также можно попарно разделить на соседние и противолежащие: стороны, имеющие общую вершину, называются соседними (или смежными ), стороны, не имеющие общих вершин — противолежащими :
Стороны AB и BC , BC и CD , CD и DA , DA и AB — смежные, а стороны AB и DC , AD и BC — противолежащие.
Если противолежащие вершины соединить отрезком, то такой отрезок будет называться диагональю четырёхугольника . Учитывая, что в четырёхугольнике есть всего две пары противолежащих вершин, то и диагоналей может быть всего две:
Отрезки AC и BD — диагонали.
Рассмотрим основные виды выпуклых четырёхугольников:
- Трапеция — четырёхугольник, у которого одна пара противоположных сторон, параллельны друг другу, а другая пара не параллельны.
- Равнобедренная трапеция — трапеция, у которой боковые стороны равны.
- Прямоугольная трапеция — трапеция, у которой один из углов прямой.
- Параллелограмм — четырёхугольник, у которого обе пары противоположных сторон параллельны друг другу.
- Прямоугольник — параллелограмм, у которого все углы равны.
- Ромб — параллелограмм, у которого все стороны равны.
- Квадрат — параллелограмм, у которого равны и стороны и углы. И прямоугольник и ромб могут быть квадратом.
Свойства углов выпуклых четырёхугольников
У всех выпуклых четырёхугольников углы обладают следующими двумя свойствами:
- Любой внутренний угол меньше 180°.
- Сумма внутренних углов равна 360°.
Плоские и объемные геометрические фигуры. Геометрические фигуры на плоскости
Геометрическая фигура называется плоской, если все тонки фигуры принадлежат одной плоскости.
Примером плоских геометрических фигур являются: прямая, отрезок, круг, различные многоугольники и др. Не являются плоскими такие фигуры, как шар, куб, цилиндр, пирамида и др.
На плоскости различают выпуклые и невыпуклые фигуры.
Геометрическая фигура называется выпуклой, если она целиком содержит отрезок, концами которого служат любые две точки, принадлежащие фигуре (рис. 54).
Примерами выпуклых фигур являются: круг, различные треугольники, квадрат. Точку, прямую, луч, отрезок, плоскость также считают выпуклыми фигурами.
Основными геометрическими фигурами на плоскости являются точка и прямая. Эти термины часто применяются даже в работе с дошкольниками. Необходимо своевременно научить детей узнавать эти фигуры, изображать их, понимать и правильно выполнять задания.
Основные свойства точек и прямых раскрываются в аксиомах:
1. Существуют точки, принадлежащие и не принадлежащие прямой.
2. Через две различные точки можно провести единственную прямую.
3. Две различные прямые либо не пересекаются, либо пересекаются в одной точке.
Дети, например, в процессе игр или рисования знакомятся с точкой, отрезком, различными линиями, выделяя из них прямую, кривую, ломаную, учатся распознавать некоторые их свойства.
1. «Какая дорога от леса до дома короче?» (рис. 55).
2. «Поросята живут в домиках, расположенных на берегах реки. Они не умеют плавать. Кто из поросят может пойти в гости друг к другу?» (рис. 56).
Замкнутая линия делит плоскость на внешнюю и внутреннюю области. Дети рано усваивают, что значит «внутри» и «вне». Например, это происходит при выполнении задания на закрашивание фигуры, то есть ее внутренней области.
Геометрические фигуры, с которыми рано знакомятся дети (круг, квадрат, треугольник и др.), представляют собой замкнутые линии (границы фигур) с их внутренней областью. Границей круга
является окружность. Границей многоугольников является ломаная линия, которая состоит из отрезков. В геометрии все эти понятия имеют определения.
Отрезок — часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя данными точками, называемых концами отрезка.
Луч (полупрямая) — это часть прямой, состоящая из всех ее точек, лежащих по одну сторону от заданной на ней точки (начала луча).
Угол — это меньшая часть плоскости, ограниченная двумя лучами, выходящими из одной точки. Эти лучи называются сторонами угла, а их общая точка — вершиной угла (рис. 59).
Круг можно определить как фигуру, состоящую из окружности и ее внутренней области.
Окружность — это множество точек плоскости, равноудаленных от заданной точки. Данная точка О называется центром окружности, а заданное расстояние R — ее радиусом (рис. 64).
В детском саду дети также знакомятся с овалом («фигурой, похожей на круг тем, что у нее нет углов и сторон, но отличающейся от круга своей вытянутостью»). В геометрии такой термин не рассматривается, но изучается эллипс. Его нецелесообразно предлагать детям из-за сложности построения. Так как в быту часто используют слова «овал», «предмет овальной формы», знания об овале необходимы детям как элемент сенсорного воспитания и речевого развития.
Многоугольники
Многоугольник — часть плоскости, ограниченная простой замкнутой ломаной. Звенья ломаной называются сторонами многоугольника, а вершины — вершинами многоугольника. Границу многоугольника (простую замкнутую ломаную) также называют многоугольником.
В работе с дошкольниками обычно рассматриваются модели фигур из картона, пластмассы или дерева, предлагаются задания по рисованию многоугольников при помощи трафаретов и обводок, закрашиванию фигур. В процессе этой деятельности дети знакомятся с названиями фигур, их структурой и некоторыми свойствами, используют такие термины, как: граница фигуры, внутренняя область фигуры и др.
Выпуклый многоугольник лежит в одной полуплоскости относительно любой прямой, содержащей его сторону (рис. 65).
Геометрические фигуры представляют собой комплекс точек, линий, тел или поверхностей. Эти элементы могут располагаться как на плоскости, так и в пространстве, формируя конечное количество прямых.
Термин «фигура» подразумевает под собой несколько множеств точек. Они должны располагаться на одной или нескольких плоскостях и одновременно ограничиваться конкретным числом оконченных линий.
Основными геометрическими фигурами считаются точка и прямая. Они располагаются на плоскости. Кроме них, среди простых фигур выделяют луч, ломаную линию и отрезок.
Точка
Это одна из главных фигур геометрии. Она очень маленькая, но ее всегда используют для построения различных форм на плоскости. Точка — это основная фигура для абсолютно всех построений, даже самой высокой сложности. В геометрии ее принято обозначать буквой латинской алфавита, к примеру, A, B, K, L.
С точки зрения математики точка — это абстрактный пространственный объект, не обладающий такими характеристиками, как площадь, объем, но при этом остающийся фундаментальным понятием в геометрии. Этот нульмерный объект просто не имеет определения.
Прямая
Это фигура полностью размещается в одной плоскости. У прямой нет конкретного математического определения, так как она состоит из огромного количества точек, располагающихся на одной бесконечной линии, у которой нет предела и границ.
Существует еще и отрезок. Это тоже прямая, но она начинается и заканчивается с точки, а значит, имеет геометрические ограничения.
Также линия может превратиться в направленный луч. Такое происходит, когда прямая начинается с точки, но четкого окончания не имеет. Если же поставить точку посредине линии, то она разобьется на два луча (дополнительных), причем противоположно направленных друг к другу.
Несколько отрезков, которые последовательно соединяются друг с другом концами в общей точке и располагаются не на одной прямой, принято называть ломаной линией.
Угол
Геометрические фигуры, названия которых мы рассмотрели выше, считают ключевыми элементами, использующимися при построении более сложных моделей.
Угол — это конструкция, состоящая из вершины и двух лучей, которые выходят из нее. То есть стороны этой фигуры соединяются в одной точке.
Плоскость
Рассмотрим еще одно первичное понятие. Плоскость — это фигура, у которой нет ни конца, ни начала, равно как и прямой, и точки. Во время рассмотрения этого геометрического элемента во внимание берется лишь его часть, ограниченная контурами ломаной замкнутой линии.
Любую гладкую ограниченную поверхность можно считать плоскостью. Это может быть гладильная доска, лист бумаги или даже дверь.
Четырехугольники
Параллелограмм — это геометрическая фигура, противоположные стороны которой параллельны друг другу попарно. Среди частных видов этой конструкции выделяют ромб, прямоугольник и квадрат.
Прямоугольник — это параллелограмм, у которого все стороны соприкасаются под прямым углом.
Квадрат — это четырехугольник с равными сторонами и углами.
Ромб — это фигура, у которой все грани равны. При этом углы могут быть совершенно разными, но попарно. Каждый квадрат считается ромбом. Но в противоположном направлении это правило действует не всегда. Далеко не каждый ромб является квадратом.
Трапеция
Геометрические фигуры бывают совершенно разными и причудливыми. Каждая из них имеет своеобразную форму и свойства.
Трапеция — это фигура, которая чем-то схожа с четырехугольником. Она имеет две параллельные противоположные стороны и при этом считается криволинейной.
Круг
Эта геометрическая фигура подразумевает расположение на одной плоскости точек, равноудаленных от ее центра. При этом заданный ненулевой отрезок принято называть радиусом.
Треугольник
Это простая геометрическая фигура, которая очень часто встречается и изучается.
Треугольник считается подвидом многоугольника, расположенным на одной плоскости и ограниченным тремя гранями и тремя точками соприкосновения. Эти элементы попарно соединены между собой.
Многоугольник
Вершинами многоугольников называют точки, соединяющие отрезки. А последние, в свою очередь, принято считать сторонами.
Объемные геометрические фигуры
- призма;
- сфера;
- конус;
- цилиндр;
- пирамида;
Эти тела имеют нечто общее. Все они ограничиваются замкнутой поверхностью, внутри которой находится множество точек.
Объемные тела изучают не только в геометрии, но и в кристаллографии.
Любопытные факты
Наверняка вам будет интересно ознакомиться с информацией, предоставленной ниже.
- Геометрия сформировалась как наука еще в давние века. Это явление принято связывать с развитием искусства и разнообразных ремесел. А названия геометрических фигур свидетельствуют об использовании принципов определения подобия и схожести.
- В переводе с древнегреческого термин «трапеция» обозначает столик для трапезы.
- Если вы возьмете различные фигуры, периметр которых будет одинаковым, то наибольшая площадь гарантированно будет у круга.
- В переводе с греческого языка термин «конус» обозначает сосновую шишку.
- Существует известная картина Каземира Малевича, которая начиная с прошлого века притягивает к себе взгляды многих живописцев. Работа «Черный квадрат» всегда была мистической и загадочной. Геометрическая фигура на белом полотне восхищает и поражает одновременно.
Существует большое количество геометрических фигур. Все они отличаются параметрами, а порой даже удивляют формами.
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF
Введение
Геометрия — одна из важнейших компонент математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, а также для эстетического воспитания. Изучение геометрии вносит вклад в развитие логического мышления, формирование навыков доказательства.
В курсе геометрии 7 класса систематизируются знания о простейших геометрических фигурах и их свойствах; вводится понятие равенства фигур; вырабатывается умение доказывать равенство треугольников с помощью изученных признаков; вводится класс задач на построение с помощью циркуля и линейки; вводится одно из важнейших понятий — понятие о параллельных прямых; рассматриваются новые интересные и важные свойства треугольников; рассматривается одна из важнейших теорем в геометрии — теорема о сумме углов треугольника, которая позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный).
На протяжении занятий, особенно при переходе от одной части занятия к другой, смене деятельности встает вопрос о поддержании интереса к занятиям. Таким образом, актуальным становится вопрос о применении на занятиях по геометрии задач, в которых есть условие проблемной ситуации и элементы творчества . Таким образом, целью данного исследования является систематизация заданий геометрического содержания с элементами творчества и проблемных ситуаций.
Объект исследования : Задачи по геометрии с элементами творчества, занимательности и проблемных ситуаций.
Задачи исследования: Проанализировать существующие задачи по геометрии, направленные на развитие логики, воображения и творческого мышления. Показать, как занимательными приемами можно развить интерес к предмету.
Теоретическая и практическая значимость исследования состоит в том, что собранный материал может быть использован в процессе дополнительных занятий по геометрии, а именно на олимпиадах и конкурсах по геометрии.
Объем и структура исследования:
Исследование состоит из введения, двух глав, заключения, библиографического списка, содержит 14 страниц основного машинописного текста, 1 таблицу, 10 рисунков.
Глава 1. ПЛОСКИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ
1.1. Основные геометрические фигуры в архитектуре зданий и сооружений
В окружающем нас мире существует множество материальных предметов разных форм и размеров: жилые дома, детали машин, книги, украшения, игрушки и т. д.
В геометрии вместо слова предмет говорят геометрическая фигура, при этом разделяя геометрические фигуры на плоские и пространственные. В данной работе будет рассмотрен один из интереснейших разделов геометрии — планиметрия, в которой рассматриваются только плоские фигуры. Планиметрия (от лат. planum — «плоскость», др.-греч. μετρεω — «измеряю») — раздел евклидовой геометрии, изучающий двумерные (одноплоскостные) фигуры, то есть фигуры, которые можно расположить в пределах одной плоскости. Плоской геометрической фигурой называется такая, все точки которой лежат на одной плоскости. Представление о такой фигуре даёт любой рисунок, сделанный на листе бумаги.
Но прежде, чем рассматривать плоские фигуры, необходимо познакомиться с простыми, но очень важными фигурами, без которых плоские фигуры просто не могут существовать.
Самой простой геометрической фигурой является точка. Это одна из главных фигур геометрии. Она очень маленькая, но ее всегда используют для построения различных форм на плоскости. Точка — это основная фигура для абсолютно всех построений, даже самой высокой сложности. С точки зрения математики точка — это абстрактный пространственный объект, не обладающий такими характеристиками, как площадь, объем, но при этом остающийся фундаментальным понятием в геометрии.
Прямая — одно из фундаментальных понятий геометрии.При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии (евклидовой). Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то прямую линию можно определить, как линию, путь вдоль которой равен расстоянию между двумя точками.
Прямые в пространстве могут занимать различные положения, рассмотрим некоторые из них и приведем примеры, встречающиеся в архитектурном облике зданий и сооружений (табл. 1):
Таблица 1
Параллельные прямые | Свойства параллельных прямых | |
Если прямые параллельны, то их одноименные проекции параллельны: | Ессентуки, здание грязелечебницы (фото автора) | |
Пересекающиеся прямые | Свойства пересекающихся прямых | Примеры в архитектуре зданий и сооружений |
Пересекающиеся прямые имеют общую точку, то есть точки пересечения их одноименных проекций лежат на общей линии связи: | Здания «горы» на Тайване https://www.sro-ps.ru/novosti_otrasli/2015_11_11_pervoe_zdanie_iz_grandioznogo_proekta_big_v_tayvane | |
Скрещивающиеся прямые | Свойства скрещивающихся прямых | Примеры в архитектуре зданий и сооружений |
Прямые, не лежащие в одной плоскости и не параллельные между собой, являются скрещивающимися. Ноне является общей линией связи. Если пересекающиеся и параллельные прямые лежат в одной плоскости, то скрещивающиеся прямые лежат в двух параллельных плоскостях. | Робер, Гюбер — Вилла Мадама под Римом https://gallerix.ru/album/Hermitage-10/pic/glrx-172894287 |
1.2. Плоские геометрические фигуры. Свойства и определения
Наблюдая за формами растений и животных, гор и извилинами рек, за особенностями ландшафта и далекими планетами, человек заимствовал у природы ее правильные формы, размеры и свойства. Материальные потребности побуждали человека строить жилища, изготавливать орудия труда и охоты, лепить из глины посуду и прочее. Все это постепенно способствовало тому, что человек пришел к осознанию основных геометрических понятий.
Четырехугольники:
Параллелограмм (др.-греч. παραλληλόγραμμον от παράλληλος — параллельный и γραμμή — черта, линия) — это четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых.
Признаки параллелограмма:
Четырёхугольник является параллелограммом, если выполняется одно из следующих условий: 1. Если в четырёхугольнике противоположные стороны попарно равны, то четырёхугольник — параллелограмм. 2. Если в четырёхугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырёхугольник — параллелограмм. 3. Если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник — параллелограмм.
Параллелограмм, у которого все углы прямые, называется прямоугольником.
Параллелограмм, у которого все стороны равны, называется ромбом.
Трапеция— это четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.
Треугольник — это простейшая геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника , а отрезки — сторонами треугольника. Именно в силу своей простоты треугольник явился основой многих измерений. Землемеры при своих вычислениях площадей земельных участков и астрономы при нахождении расстояний до планет и звезд используют свойства треугольников. Так возникла наука тригонометрия — наука об измерении треугольников, о выражении сторон через его углы. Через площадь треугольника выражается площадь любого многоугольника: достаточно разбить этот многоугольник на треугольники, вычислить их площади и сложить результаты. Правда, верную формулу для площади треугольника удалось найти не сразу.
Особенно активно свойства треугольника исследовались в XV-XVI веках. Вот одна из красивейших теорем того времени, принадлежащая Леонарду Эйлеру:
Огромное количество работ по геометрии треугольника, проведенное в XY-XIX веках, создало впечатление, что о треугольнике уже известно все.
Многоуго́льник — это геометрическая фигура, обычно определяемая как замкнутая ломаная.
Круг — геометрическое место точек плоскости, расстояние от которых до заданной точки, называемой центром круга, не превышает заданного неотрицательного числа, называемого радиусом этого круга. Если радиус равен нулю, то круг вырождается в точку.
Существует большое количество геометрических фигур, все они отличаются параметрами и свойствами, порой удивляя своими формами.
Чтобы лучше запомнить и отличать плоские фигуры по свойствам и признакам, я придумал геометрическую сказку, которую хотел бы представит вашему вниманию в следующем параграфе.
Глава 2. ЗАДАЧИ-ГОЛОВОЛОМКИ ИЗ ПЛОСКИХ ГЕОМЕТРИЧЕСКИХ ФИГУР
2.1.Головоломки на построение сложной фигуры из набора плоских геометрических элементов.
Изучив плоские фигуры, я задумался, а существуют какие-нибудь интересные задачи с плоскими фигурами, которые можно использовать в качестве заданий-игр или заданий-головоломок. И первой задачей, которую я нашел, была головоломка «Танграм».
Это китайская головоломка. В Китае ее называют «чи тао ту», т.е умственная головоломка из семи частей. В Европе название «Танграм» возникло, вероятнее всего, от слова «тань», что означает «китаец» и корня «грамма» (греч. — «буква»).
Для начала необходимо начертить квадрат 10 х10 и разделить его на семь частей: пять треугольников 1-5 , квадрат 6 и параллелограмм 7 . Суть головоломки состоит в том, чтобы, используя все семь частей, сложить фигурки, показанные на рис.3.
Рис.3. Элементы игры «Танграм» и геометрические фигуры
Рис.4. Задания «Танграм»
Особенно интересно составлять из плоских фигур «образные» многоугольники, зная лишь очертания предметов (рис.4). Несколько таких заданий-очертаний я придумал сам и показал эти задания своим одноклассникам, которые с удовольствием принялись разгадывать задания и составили много интересных фигур-многогранников, похожих на очертания предметов окружающего нас мира.
Для развития воображения можно использовать и такие формы занимательных головоломок, как задачи на разрезание и воспроизведение заданных фигур.
Пример 2. Задачи на разрезание (паркетирование) могут показаться, на первый взгляд, весьма многообразными. Однако в большинстве в них используется всего лишь несколько основных типов разрезаний (как правило, те, с помощью которых из одного параллелограмма можно получить другой).
Рассмотрим некоторые приёмы разрезаний. При этом разрезанные фигуры будем называть многоугольниками.
Рис. 5. Приёмы разрезаний
На рис.5 представлены геометрические фигуры, из которых можно собрать различные орнаментальные композиции и составить орнамент своими руками.
Пример 3. Еще одна интересная задача, которую можно самостоятельно придумать и обмениваться с другими учениками, при этом кто больше соберет разрезанные фигуры, тот объявляется победителем. Задач такого типа может быть достаточно много. Для кодирования можно взять все существующие геометрические фигуры, которые разрезаются на три или четыре части.
Рис.6.Примеры задач на разрезание:
—— — воссозданный квадрат; — разрез ножницами;
Основная фигура
2.2.Равновеликие и равносоставленные фигуры
Рассмотрим еще один интересный прием на разрезание плоских фигур, где основными «героями» разрезаний будут многоугольники. При вычислении площадей многоугольников используется простой прием, называемый методом разбиения.
Вообще многоугольники называются равносоставленными, если, определенным образом разрезав многоугольник F на конечное число частей, можно, располагая эти части иначе, составить из них многоугольник Н.
Отсюда вытекает следующая теорема: равносоставленные многоугольники имеют одинаковую площадь, поэтому они будут считаться равновеликими.
На примере равносоставленных многоугольников можно рассмотреть и такое интересное разрезание, как преобразование «греческого креста» в квадрат (рис.7).
Рис.7. Преобразование «греческого креста»
В случае мозаики (паркета), составленной из греческих крестов, параллелограмм периодов представляет собой квадрат. Мы можем решить задачу, накладывая мозаику, составленную из квадратов, на мозаику, образованную с помощью крестов, так, чтобы при этом конгруэнтные точки одной мозаики совпали с конгруэнтными точками другой (рис.8).
На рисунке конгруэнтные точки мозаики из крестов, а именно центры крестов, совпадают с конгруэнтными точками «квадратной» мозаики — вершинами квадратов. Параллельно сдвинув квадратную мозаику, мы всегда получим решение задачи. Причем, задача имеет несколько вариантов решений, если при составлении орнамента паркета используется цвет.
Рис.8. Паркет, собранный из греческого креста
Еще один пример равносоставленных фигур можно рассмотреть на примере параллелограмма. Например, параллелограмм равносоставлен с прямоугольником (рис.9).
Этот пример иллюстрирует метод разбиения, состоящий в том, что для вычисления площади многоугольника пытаются разбить его на конечное число частей таким образом, чтобы из этих частей можно было составить более простой многоугольник, площадь которого нам уже известна.
Например, треугольник равносоставлен с параллелограммом, имеющим то же основание и вдвое меньшую высоту. Из этого положения легко выводится формула площади треугольника.
Отметим, что для приведенной выше теоремы справедлива и обратная теорема: если два многоугольника равновелики, то они равносоставлены.
Эту теорему, доказанную в первой половине XIX в. венгерским математиком Ф.Бойяи и немецким офицером и любителем математики П.Гервином, можно представить и в таком виде: если имеется торт в форме многоугольника и многоугольная коробка, совершенно другой формы, но той же площади, то можно так разрезать торт на конечное число кусков (не переворачивая их кремом вниз), что их удастся уложить в эту коробку.
Заключение
В заключении отмечу, что задач на плоские фигуры достаточно представлено в различных источниках, но интерес представили для меня те, на основании которых мне пришлось придумывать свои задачи-головоломки.
Ведь решая такие задачи, можно не просто накопить жизненный опыт, но и приобрести новые знания и умения.
В головоломках при построении действий-ходов используя повороты, сдвиги, переносы на плоскости или их композиции, у меня получились самостоятельно созданные новые образы, например, фигурки-многогранники из игры «Танграм».
Известно, что основным критерием подвижности мышления человека является способность путём воссоздающего и творческого воображения выполнить в установленный отрезок времени определенные действия, а в нашем случае — ходы фигур на плоскости. Поэтому изучение математики и, в частности, геометрии в школе даст мне еще больше знаний, чтобы в дальнейшем применить их в своей будущей профессиональной деятельности.
Библиографический список
1. Павлова, Л.В. Нетрадиционные подходы к обучению черчению: учебное пособие/ Л.В. Павлова. — Нижний Новгород: Изд-во НГТУ, 2002. — 73 с.
2. Энциклопедический словарь юного математика /Сост. А.П. Савин. — М.: Педагогика, 1985. — 352 с.
3.https://www.srops.ru/novosti_otrasli/2015_11_11_pervoe_zdanie_iz_grandioznogo_proekta_big_v_tayvane
4.https://www.votpusk.ru/country/dostoprim_info.asp?ID=16053
Приложение 1
Анкета-опросник для одноклассников
1. Знаете ли вы, что такое головоломка «Танграм»?
2. Что такое «греческий крест»?
3. Было бы вам интересно узнать, что такое «Танграм»?
4. Было бы вам интересно узнать, что такое «греческий крест»?
Было опрошено 22 ученика 8 класса. Результаты: 22 ученика не знают, что такое «Танграм» и «греческий крест». 20-ти ученикам было бы интересно узнать о том, как с помощью головоломки «Танграм», состоящая из семи плоских фигур, получить более сложную фигуру. Результаты опроса обобщены на диаграмме.
Приложение 2
Элементы игры «Танграм» и геометрические фигуры
Преобразование «греческого креста»
Геометрическая фигура — множество точек на поверхности (зачастую на плоскости), которое образует конечное количество линий.
Основными геометрическими фигурами на плоскости являются точка и прямая линия . Отрезок, луч, ломаная линия — самые простые геометрические фигуры на плоскости.
Точка — мельчайшая геометрическая фигура, являющаяся основой других фигур во всяком изображении либо чертеже.
Каждая более сложная геометрическая фигура есть множество точек, которые обладают определенным свойством, характерное только для этой фигуры.
Прямая линия , либо прямая — это бесконечное множество точек, расположенных на 1-ой линии, которая не имеет начала и конца. На листе бумаги можно увидеть лишь часть прямой линии, т.к. она не имеет предела.
Прямую изображают так:
Часть прямой линии, которая ограничена с 2-х сторон точками, называют отрезком прямой, либо отрезком. Его изображают так:
Луч — это направленная полупрямая, имеющая точку начала и у которой нет конца. Луч изображают так:
Если на прямой поставить точку, то эта точка будет разбивать прямую на 2 противоположно направленных луча. Эти лучи называют дополнительными .
Ломаная линия — несколько отрезков, которые соединены друг с другом таким образом, что конец 1-го отрезка оказывается началом 2-го отрезка, а конец 2-го отрезка — началом 3-го отрезка и так далее, причем соседние (которые имеют 1-ну общую точку) отрезки располагаются на разных прямых. Когда конец последнего отрезка не совпадает с началом 1-го, значит, эта ломаная линия будет называться незамкнутой :
Когда конец последнего отрезка ломаной совпадает с началом 1-го, значит, эта ломаная линия будет замкнутой . Пример замкнутой ломаной — это всякий многоугольник:
Четырехзвенная замкнутая ломаная линия — четырехугольник (прямоугольник) :
Трехзвенная замкнутая ломаная линия —
Объёмные геометрические фигуры и их названия. Геометрические фигуры. Играем в геометрическое лото
Геометрические фигуры представляют собой комплекс точек, линий, тел или поверхностей. Эти элементы могут располагаться как на плоскости, так и в пространстве, формируя конечное количество прямых.
Термин «фигура» подразумевает под собой несколько множеств точек. Они должны располагаться на одной или нескольких плоскостях и одновременно ограничиваться конкретным числом оконченных линий.
Основными геометрическими фигурами считаются точка и прямая. Они располагаются на плоскости. Кроме них, среди простых фигур выделяют луч, ломаную линию и отрезок.
Точка
Это одна из главных фигур геометрии. Она очень маленькая, но ее всегда используют для построения различных форм на плоскости. Точка — это основная фигура для абсолютно всех построений, даже самой высокой сложности. В геометрии ее принято обозначать буквой латинской алфавита, к примеру, A, B, K, L.
С точки зрения математики точка — это абстрактный пространственный объект, не обладающий такими характеристиками, как площадь, объем, но при этом остающийся фундаментальным понятием в геометрии. Этот нульмерный объект просто не имеет определения.
Прямая
Это фигура полностью размещается в одной плоскости. У прямой нет конкретного математического определения, так как она состоит из огромного количества точек, располагающихся на одной бесконечной линии, у которой нет предела и границ.
Существует еще и отрезок. Это тоже прямая, но она начинается и заканчивается с точки, а значит, имеет геометрические ограничения.
Также линия может превратиться в направленный луч. Такое происходит, когда прямая начинается с точки, но четкого окончания не имеет. Если же поставить точку посредине линии, то она разобьется на два луча (дополнительных), причем противоположно направленных друг к другу.
Несколько отрезков, которые последовательно соединяются друг с другом концами в общей точке и располагаются не на одной прямой, принято называть ломаной линией.
Угол
Геометрические фигуры, названия которых мы рассмотрели выше, считают ключевыми элементами, использующимися при построении более сложных моделей.
Угол — это конструкция, состоящая из вершины и двух лучей, которые выходят из нее. То есть стороны этой фигуры соединяются в одной точке.
Плоскость
Рассмотрим еще одно первичное понятие. Плоскость — это фигура, у которой нет ни конца, ни начала, равно как и прямой, и точки. Во время рассмотрения этого геометрического элемента во внимание берется лишь его часть, ограниченная контурами ломаной замкнутой линии.
Любую гладкую ограниченную поверхность можно считать плоскостью. Это может быть гладильная доска, лист бумаги или даже дверь.
Четырехугольники
Параллелограмм — это геометрическая фигура, противоположные стороны которой параллельны друг другу попарно. Среди частных видов этой конструкции выделяют ромб, прямоугольник и квадрат.
Прямоугольник — это параллелограмм, у которого все стороны соприкасаются под прямым углом.
Квадрат — это четырехугольник с равными сторонами и углами.
Ромб — это фигура, у которой все грани равны. При этом углы могут быть совершенно разными, но попарно. Каждый квадрат считается ромбом. Но в противоположном направлении это правило действует не всегда. Далеко не каждый ромб является квадратом.
Трапеция
Геометрические фигуры бывают совершенно разными и причудливыми. Каждая из них имеет своеобразную форму и свойства.
Трапеция — это фигура, которая чем-то схожа с четырехугольником. Она имеет две параллельные противоположные стороны и при этом считается криволинейной.
Круг
Эта геометрическая фигура подразумевает расположение на одной плоскости точек, равноудаленных от ее центра. При этом заданный ненулевой отрезок принято называть радиусом.
Треугольник
Это простая геометрическая фигура, которая очень часто встречается и изучается.
Треугольник считается подвидом многоугольника, расположенным на одной плоскости и ограниченным тремя гранями и тремя точками соприкосновения. Эти элементы попарно соединены между собой.
Многоугольник
Вершинами многоугольников называют точки, соединяющие отрезки. А последние, в свою очередь, принято считать сторонами.
Объемные геометрические фигуры
- призма;
- сфера;
- конус;
- цилиндр;
- пирамида;
Эти тела имеют нечто общее. Все они ограничиваются замкнутой поверхностью, внутри которой находится множество точек.
Объемные тела изучают не только в геометрии, но и в кристаллографии.
Любопытные факты
Наверняка вам будет интересно ознакомиться с информацией, предоставленной ниже.
- Геометрия сформировалась как наука еще в давние века. Это явление принято связывать с развитием искусства и разнообразных ремесел. А названия геометрических фигур свидетельствуют об использовании принципов определения подобия и схожести.
- В переводе с древнегреческого термин «трапеция» обозначает столик для трапезы.
- Если вы возьмете различные фигуры, периметр которых будет одинаковым, то наибольшая площадь гарантированно будет у круга.
- В переводе с греческого языка термин «конус» обозначает сосновую шишку.
- Существует известная картина Каземира Малевича, которая начиная с прошлого века притягивает к себе взгляды многих живописцев. Работа «Черный квадрат» всегда была мистической и загадочной. Геометрическая фигура на белом полотне восхищает и поражает одновременно.
Существует большое количество геометрических фигур. Все они отличаются параметрами, а порой даже удивляют формами.
Чукур Людмила Васильевна
Геометрические фигуры. Особенности восприятия детьми формы предметов и геометрических фигур
«ГЕОМЕТРИЧЕСКАЯ ФИГУРА .
ОСОБЕННОСТИ ВОСПРИЯТИЯ ДЕТЬМИ
Подготовила : ст. воспитатель Чукур Л . В.
1. Понятие «геометрическая фигура » . Особенности развития представлений о форме предметов у детей дошкольного возраста
Одним из свойств окружающих предметов является их форма . Форма предметов получила обобщенное отражение в геометрических фигурах .
Фигура — латинское слово , означает «образ» , «вид» , «начертание» ; это часть плоскости, ограниченная замкнутой линией, или часть пространства, ограниченная замкнутой поверхностью. Этот термин вошел в общее употребление в XII в. До этого чаще употреблялось другое латинское слово — «форма » , также означающее «наружный вид» , «внешнее очертание предмета » .
Наблюдая за предметами окружающего мира , люди заметили, что есть некоторое общее свойство, позволяющее объединить предметы в одну группу . Это свойство было названо геометрической фигурой . Геометрическая фигура – это эталон для определения формы предмета , всякое непустое множество точек; обобщенное абстрактное понятие.
Само определение понятия геометрической фигуры дали древние греки . Они определили , что геометрической фигурой является внутренняя область, ограниченная замкнутой линией на плоскости. Активно это понятие применял в своей работе Евклид. Древние греки классифицировали все геометрические фигуры и дали им названия .
Упоминание о первых геометрических фигурах встречается и у древних египтян и древних шумеров. Учеными-археологами был найден папирусный свиток с геометрическими задачами , в которых упоминались геометрические фигуры . И каждая из них называлась каким-то определенным словом .
Таким образом, представление о геометрии и изучаемых этой наукой фигурах имели люди с давних времен, но название, «геометрическая фигура » и названия всем геометрическим фигурам дали древнегреческие ученые.
В наше время знакомство с геометрическими фигурами начинается с раннего детства и продолжается на всём пути обучения. Дошкольники, познавая окружающий мир, сталкиваются с разнообразием форм предметов , учатся называть и различать их, а затем знакомятся и со свойствами геометрических фигур .
Форма – это внешнее очертание предмета . Множество форм бесконечно .
Представления о форме предметов возникают у детей достаточно рано. В исследованиях Л. А. Венгера выясняется, возможно ли различение формы предметов детьми , у которых еще не сформировался акт хватания . В качестве индикатора он использовал ориентировочную реакцию ребенка в возрасте 3-4 месяцев.
Детям предъявлялись два объемных тела одинакового стального цвета и размера (призма и шар, одно из них подвешивалась над манежем, чтобы угасить ориентировочную реакцию; затем снова подвешивалась пара фигур . На одну из них (призма) реакция угашена, другая (шар) — новая. Малыши обращали взор на новую фигуру и фиксировали ее взглядом в течение более длительного времени, чем старую.
Л. А. Венгер заметил также, что что на геометрической фигуре с изменением пространственной ориентации возникает такое же зрительное сосредоточение, как и на новой геометрической фигуре .
Исследования М. Денисовой и Н. Фигурина показали , что грудной ребенок по форме на ощупь определяет бутылочку , соску, материнскую грудь. Зрительно дети начинают различать форму предметов с 5 месяцев . При этом индикатором различения являются движения рук, корпуса по направлению к экспериментальному объекту и схватывание его (при пищевом подкреплении) .
В других исследованиях выявлено, что, если предметы отличаются цветом , то ребенок 3-х лет выделяет их форму только в том случае , если предмет знаком ребенку из практического опыта (опыт манипуляций, действий) .
Это доказывает и тот факт, что ребенок одинаково узнает прямые и перевернутые изображения (может рассматривать и понимать знакомые картинки, держа книжку «вверх ногами» , предметы , окрашенные в несвойственные цвета (черное яблоко, но квадрат, повернутый на угол, т. е. в виде ромба, не узнает, так как исчезает непосредственное сходство формы предмета , которого нет в опыте.
2. Особенности восприятия детьми дошкольного возраста формы предметов и геометрических фигур
Одним из ведущих познавательных процессов детей дошкольного возраста является восприятие . Восприятие помогает отличить один предмет от другого , выделить какие-то предметы или явления из других похожих на него.
Первичное овладение формой предмета Форма предмета , как таковая, не предмета предшествовать практическим действиям. Действия детей с предметами на разных этапах различны.
Исследования психолога С. Н. Шабалина показывают, что геометрическая фигура воспринимается дошкольниками своеобразно. Если взрослый воспринимает ведро или стакан как предметы , имеющие цилиндрическую форму , то в его восприятие включается знание геометрических форм . У дошкольника происходит обратное явление.
В 3-4 года дети опредмечивают геометрические фигуры , так как они в их опыте представлена нераздельно с предметами , не абстрагированы. Геометрическая фигура воспринимается детьми как картинка , как некоторый предмет : квадрат — это платочек, кармашек; треугольник — крыша, круг — колесо, мячик, два круга рядом — очки, несколько кругов рядом — бусы и т. п.
В 4 года опредмечивание геометрической фигуры возникает только при столкновении ребенка с незнакомой фигурой : цилиндр — это ведро, стаканчик.
В 4-5 лет ребенок начинает сравнивать геометрическую фигуру с предметом : про квадрат говорит «это как платочек» .
В результате организованного обучения дети начинают выделять в окружающих предметах знакомую геометрическую фигуру , сравнивать предмет с фигурой (стаканчик как цилиндр, крыша как треугольник, учится давать правильное название геометрической фигуры и формы предмета , в их речи появляются слова «квадрат» , «круг» , «квадратный» , «круглый» и т. п.
Проблему знакомства детей с геометрическими фигурами и их свойствами следует рассматривать в двух аспектах :
В плане сенсорного восприятия форм геометрических фигур и использования их как эталонов в познании форм окружающих предметов ;
В смысле познания особенностей их структуры , свойств, основных свя-зей и закономерностей в их построении, т. е. собственно геометри-ческого материала .
Контур предмета это общее начало , которое является исходным как для зрительного, так и для осязательного восприятия . Однако вопрос о роли контура в восприятии формы и формировании целостного образа требует еще дальнейшей разработки.
Первичное овладение формой предмета осуществляется в действиях с ним. Форма предмета , как таковая, не воспринимается отдельно от предмета , она является его неотъемлемым признаком. Специфические зрительные реакции прослеживания контура предмета появляются в конце второго года жизни и начинают предшествовать практическим действиям.
Действия детей с предметами на разных этапах различны. Малыши стремятся, прежде всего, захватить предмет руками и начать манипулировать им. Дети 2,5 лет, прежде чем действовать, довольно подробно зрительно и осязательно — двигательно знакомятся с предметами . Значение практических действий остается главным. Отсюда следует вывод о необходимости руководить развитием перцептивных действий двухлетних детей. В зависимости от педагогического руководства характер перцептивных действий детей постепенно достигает познавательного уровня. Ребенка начинают интересовать различные признаки предмета , в том числе и форма . Однако он еще долго не может выделить и обобщить тот или иной признак, в том числе и форму разных предметов .
Сенсорное восприятие формы предмета должно быть направлено не только на то, чтобы видеть , узнавать формы , наряду с другими его признаками, но уметь, абстрагируя форму от вещи , видеть ее и в других вещах . Такому восприятию формы предметов и ее обобщению и способствует знание детьми эталонов — геометрических фигур . Поэтому задачей сенсорного развития является формирование у ребенка умений узнавать в соответствии с эталоном (той или иной геометрической фигурой ) форму разных предметов .
Экспериментальные данные Л. А. Венгера показали, что возможностью различать геометрические фигуры обладают дети 3-4 месяцев. Сосредоточение взгляда на новой фигуре — свидетельство этому.
Уже на втором году жизни дети свободно выбирают фигуру по образцу из таких пар : квадрат и полукруг, прямоугольник и треугольник. Но различать прямоугольник и квадрат, квадрат и треугольник дети могут лишь после 2,5 лет. Отбор же по образцу фигур более сложной формы доступен примерно на рубеже 4-5 лет, а воспроизведение сложной фигуры осуществляют дети пятого и шестого года жизни.
Под обучающим воздействием взрослых восприятие геометрических фигур постепенно перестраивается. Геометрические фигуры начинают восприниматься детьми как эталоны , с помощью которых познание структуры предмета , его формы и размера осуществляется не только в процессе восприятия той или иной формы зрением , но и путем активного осязания, ощупывания ее под контролем зрения и обозначения словом.
Совместная работа всех анализаторов способствует более точному восприятию формы предметов . Чтобы лучше познать предмет , дети стремятся коснуться его рукой, взять в руки, повернуть; причем рассматривание и ощупывание различны в зависимости от формы и конструкции познаваемого объекта. Поэтому основную роль в восприятии предмета и определении его формы имеет обследование , осуществляемое одновременно зрительным и двигательно-осязательным анализаторами с последующим обозначением словом. Однако у дошкольников наблюдается весьма низкий уровень обследования формы предметов ; чаще всего они ограничиваются беглым зрительным восприятием и поэтому не различают близкие по сходству фигуры (овал и круг, прямоугольник и квадрат, разные треугольники) .
В перцептивной деятельности детей осязательно-двигательные и зрительные приемы постепенно становятся основным способом рас-познавания формы . Обследование фигур не только обеспечивает целостное их восприятие , но и позволяет ощутить их особенности (характер, направления линий и их сочетания, образующиеся углы и вершины, ребенок учится чувственно выделять в любой фигуре образ в целом и его части. Это дает возможность в дальнейшем сосредоточить внимание ребенка на осмысленном анализе фигуры , сознательно выделяя в ней структурные элементы (стороны, углы, вершины) . Дети уже осознанно начинают понимать и такие свойства, как устойчивость, неустойчивость и др., понимать, как образуются вершины, углы и т. д. Сопоставляя объемные и плоские фигуры , дети находят уже общность между ними («У куба есть квадраты» , «У бруса — прямоугольники, у цилиндра — круги» и т. д.).
Сравнение фигуры с формой того или иного предмета помогает детям понять, что с геометрическими фигурами можно сравнивать разные предметы или их части . Так, постепенно геометрическая фигура становится эталоном определения формы предметов .
3. Особенности обследования и этапы обучения обследованию детьми дошкольного возраста формы предметов и геометрических фигур
Известно, что в основе познания всегда лежит сенсорное обследование, опосредованное мышлением и речью. В исследованиях Л. Венгера с детьми 2-3 лет индикатором зрительного различения формы предметов служили предметные действия ребенка .
По исследованиям С. Якобсон, В. Зинченко, А. Рузской дети 2-4 лет лучше узнавали предметы по форме , когда предлагалось сначала ощупать предмет , а потом найти такой же. Более низкие результаты наблюдались тогда, когда предмет воспринимался зрительно .
Исследования Т. Гиневской раскрывают особенности движений рук при обследовании предметов по форме . Детям завязывали глаза и предлагали ознакомиться с предметом путем осязания .
В 3-4 года – движения исполнительные (катают, стучат, возят) . Движения немногочисленны, внутри фигуры , иногда (однократно) по осевой линии, много ошибочных ответов, смешение разных фигур . В 4-5 лет – движения установочные (зажимают в руке) . Количество движений увеличивается в два раза; судя по траектории, ориентированы на размер и площадь; крупные, размашистые, обнаруживаются группы близко расположенных фиксаций, относящихся к наиболее характерным признакам фигуры ; дают более высокие результаты. В 5-6лет – движения обследовательские (прослеживание контура, проверка на упругость) . Появляются движения, прослеживающие контур, однако они охватывают наиболее характерную часть контура, другие части оказываются необследованными; движения внутри контура, количество то же, высокие результаты; как и в предыдущий период , наблюдается смешение близких фигур . В 6-7 лет – движения по контуру, пересечение поля фигуры , причем движения сосредотачиваются на наиболее информативных признаках , наблюдаются отличные результаты не только при узнавании, но и при воспроизведении .
Таким образом, для того, чтобы ребенок выделил существенные признаки геометрических фигур , необходимо их зрительное и двигательное обследование. Движения рук организовывают движения глаз и этому детей необходимо научить.
Этапы обучения обследованию
Задача первого этапа обучения детей 3-4 лет — это сенсорное восприятие формы предметов и геометрических фигур .
Второй этап обучения детей 5-6 лет должен быть посвящен формированию системных знаний о геометрических фигурах и развитию у них начальных приемов и способов «геометрического мышления » .
«Геометрическое мышление » вполне возможно развить еще в дошкольном возрасте. В развитии «геометрических знаний » у детей прослеживается несколько различных уровней.
Первый уровень характеризуется тем, что фигура воспринимается детьми как целое , ребенок еще не умеет выделять в ней отдельные элементы, не замечает сходства и различия между фигурами , каждую из них воспринимает обособленно .
На втором уровне ребенок уже выделяет элементы в фигуре и устанавливает отношения как между ними, так и между отдельными фигурами , однако еще не осознает общности между фигурами .
На третьем уровне ребенок в состоянии устанавливать связи между свойствами и структурой фигур , связи между самими свойствами. Переход от одного уровня к другому не является самопроизвольным, идущим параллельно биологическому развитию человека и зависящим от возраста. Он протекает под влиянием целенаправленного обучения, которое содействует ускорению перехода к более высокому уровню. Отсутствие же обучения тормозит развитие. Обучение поэтому следует организовывать так, чтобы в связи с усвоением знаний о геометрических фигурах у детей развивалось и элементарное геометрическое мышление .
Познание геометрических фигур , их свойств и отношений расширяет кругозор детей, позволяет им более точно и разносторонне воспринимать форму окружающих предметов , что положительно отражается на их продуктивной деятельности (например, рисовании, лепке) .
Большое значение в развитии геометрического мышления и про-странственных представлений имеют действия по преобразованию фигур (из двух треугольников составить квадрат или из пяти палочек сложить два треугольника).
Все эти разновидности упражнений развивают пространственные представления и начала геометрического мышления детей , формируют у них умения наблюдать, анализировать, обобщать, выделять главное, существенное и одновременно с этим воспитывают такие качества личности, как целенаправленность, настойчивость.
Итак, в дошкольном возрасте происходит овладение перцептивной и интеллектуальной систематизацией форм геометрических фигур . Перцептивная деятельность в познании фигур опережает развитие интеллектуальной систематизации.
Библиографический список
1. Белошистая А. В. Знакомство с геометрическими понятиями / А . Белошистая // Дошкольное воспитание . — 2008. — № 9. — с. 41- 51
2. Венгер Л. А. Воспитание сенсорной культуры ребенка / Л. А. Венгер Э. Г. Пилюгина, Н. Б. Венгер. — М. : Просвещение, 1988.- 144с.
3. Воспитание и обучение детей пятого года жизни : книга для воспитателя детского сада / (А. Н. Давидчук, Т. И. Осокина, Л. А. Парамонова и др.) ; под ред. В. В. Холмовской. — М. : Просвещение, 1986. — 144 с.
4. Габова М. А. Знакомство детей с геометрическими фигурами / М . А. Габова // Дошкольное воспитание . — 2002. — № 9. — с. 2- 17.
5. Дидактические игры и упражнения по сенсорному воспитанию дошкольников : (пособие для воспитателя детского сада / под ред. Л. А. Венгера). — М. : Просвещение, 1978. — 203 с.
6. Кербс Е. В. Математические досуги / Е. В. Кербс // Ребёнок в детском саду. — 2008. — № 3. — с. 21- 23.
7.Математика в детском саду : (пособие для воспитателя дет . сада / составитель Г. М. Лямина). — М. : Просвещение, 1977. — С. 224 — 228.
8. Метлина Л. С.Математика в детском саду : (пособие для воспитателя дет . сада) / Л. С. Метлина. — М. : Просвещение, 1994. — 256 с.
Геометрические фигуры представляют собой комплекс точек, линий, тел или поверхностей. Эти элементы могут располагаться как на плоскости, так и в пространстве, формируя конечное количество прямых.
Термин «фигура» подразумевает под собой несколько множеств точек. Они должны располагаться на одной или нескольких плоскостях и одновременно ограничиваться конкретным числом оконченных линий.
Основными геометрическими фигурами считаются точка и прямая. Они располагаются на плоскости. Кроме них, среди простых фигур выделяют луч, ломаную линию и отрезок.
Точка
Это одна из главных фигур геометрии. Она очень маленькая, но ее всегда используют для построения различных форм на плоскости. Точка — это основная фигура для абсолютно всех построений, даже самой высокой сложности. В геометрии ее принято обозначать буквой латинской алфавита, к примеру, A, B, K, L.
С точки зрения математики точка — это абстрактный пространственный объект, не обладающий такими характеристиками, как площадь, объем, но при этом остающийся фундаментальным понятием в геометрии. Этот нульмерный объект просто не имеет определения.
Прямая
Это фигура полностью размещается в одной плоскости. У прямой нет конкретного математического определения, так как она состоит из огромного количества точек, располагающихся на одной бесконечной линии, у которой нет предела и границ.
Существует еще и отрезок. Это тоже прямая, но она начинается и заканчивается с точки, а значит, имеет геометрические ограничения.
Также линия может превратиться в направленный луч. Такое происходит, когда прямая начинается с точки, но четкого окончания не имеет. Если же поставить точку посредине линии, то она разобьется на два луча (дополнительных), причем противоположно направленных друг к другу.
Несколько отрезков, которые последовательно соединяются друг с другом концами в общей точке и располагаются не на одной прямой, принято называть ломаной линией.
Угол
Геометрические фигуры, названия которых мы рассмотрели выше, считают ключевыми элементами, использующимися при построении более сложных моделей.
Угол — это конструкция, состоящая из вершины и двух лучей, которые выходят из нее. То есть стороны этой фигуры соединяются в одной точке.
Плоскость
Рассмотрим еще одно первичное понятие. Плоскость — это фигура, у которой нет ни конца, ни начала, равно как и прямой, и точки. Во время рассмотрения этого геометрического элемента во внимание берется лишь его часть, ограниченная контурами ломаной замкнутой линии.
Любую гладкую ограниченную поверхность можно считать плоскостью. Это может быть гладильная доска, лист бумаги или даже дверь.
Четырехугольники
Параллелограмм — это геометрическая фигура, противоположные стороны которой параллельны друг другу попарно. Среди частных видов этой конструкции выделяют ромб, прямоугольник и квадрат.
Прямоугольник — это параллелограмм, у которого все стороны соприкасаются под прямым углом.
Квадрат — это четырехугольник с равными сторонами и углами.
Ромб — это фигура, у которой все грани равны. При этом углы могут быть совершенно разными, но попарно. Каждый квадрат считается ромбом. Но в противоположном направлении это правило действует не всегда. Далеко не каждый ромб является квадратом.
Трапеция
Геометрические фигуры бывают совершенно разными и причудливыми. Каждая из них имеет своеобразную форму и свойства.
Трапеция — это фигура, которая чем-то схожа с четырехугольником. Она имеет две параллельные противоположные стороны и при этом считается криволинейной.
Круг
Эта геометрическая фигура подразумевает расположение на одной плоскости точек, равноудаленных от ее центра. При этом заданный ненулевой отрезок принято называть радиусом.
Треугольник
Это простая геометрическая фигура, которая очень часто встречается и изучается.
Треугольник считается подвидом многоугольника, расположенным на одной плоскости и ограниченным тремя гранями и тремя точками соприкосновения. Эти элементы попарно соединены между собой.
Многоугольник
Вершинами многоугольников называют точки, соединяющие отрезки. А последние, в свою очередь, принято считать сторонами.
Объемные геометрические фигуры
- призма;
- сфера;
- конус;
- цилиндр;
- пирамида;
Эти тела имеют нечто общее. Все они ограничиваются замкнутой поверхностью, внутри которой находится множество точек.
Объемные тела изучают не только в геометрии, но и в кристаллографии.
Любопытные факты
Наверняка вам будет интересно ознакомиться с информацией, предоставленной ниже.
- Геометрия сформировалась как наука еще в давние века. Это явление принято связывать с развитием искусства и разнообразных ремесел. А названия геометрических фигур свидетельствуют об использовании принципов определения подобия и схожести.
- В переводе с древнегреческого термин «трапеция» обозначает столик для трапезы.
- Если вы возьмете различные фигуры, периметр которых будет одинаковым, то наибольшая площадь гарантированно будет у круга.
- В переводе с греческого языка термин «конус» обозначает сосновую шишку.
- Существует известная картина Каземира Малевича, которая начиная с прошлого века притягивает к себе взгляды многих живописцев. Работа «Черный квадрат» всегда была мистической и загадочной. Геометрическая фигура на белом полотне восхищает и поражает одновременно.
Существует большое количество геометрических фигур. Все они отличаются параметрами, а порой даже удивляют формами.
Маленькие детки готовы учиться везде и всегда. Их юный мозг способен улавливать, анализировать и запоминать столько информации, сколько трудно даже взрослому человеку. То, чему родители должны научить малышей, имеет общепринятые возрастные рамки.
Основные геометрические фигуры и их названия дети должны узнать в возрасте от 3 до 5 лет.
Поскольку все дети разнообучаемы, то эти границы лишь условно приняты в нашей стране.
Геометрия – это наука о формах, размерах и расположении фигур в пространстве. Может создаться впечатление, что это сложно для малышей. Однако предметы изучения этой науки находятся повсюду вокруг нас. Вот почему иметь основные познания в этой области важно и для детей, и для старших.
Чтобы увлечь детей изучением геометрии, можно прибегнуть к веселым картинкам. Дополнительно хорошо бы иметь пособия, которые ребенок сможет потрогать, ощупать, обвести, раскрасить, узнать с закрытыми глазами. Основной принцип любых занятий с детьми – удержание их внимание и развития тяги к предмету с использованием игровых приемов и непринужденной веселой обстановки.
Сочетание нескольких средств восприятия сделает свое дело очень быстро. Воспользуйтесь нашей мини-методичкой, чтобы научить ребенка отличать геометрические фигуры, знать их названия.
Круг – самая первая из всех фигур. В природе вокруг нас многое имеет круглую форму: наша планета, солнце, луна, сердцевина цветка, многие фрукты и овощи, зрачки глаз. Объемный круг – это шар (мячик, клубок)
Начать изучение формы круга с ребенком лучше, рассматривая рисунки, а потом уже подкрепить теорию практикой, дав ребенку подержать что-нибудь круглое в руках.
Квадрат – это фигура, у которой все стороны имеют одинаковую высоту и ширину. Квадратные предметы – кубики, коробки, дом, окно, подушка, табурет и т. п.
Строить из квадратных кубиков всякие домики очень просто. Рисунок квадрата проще сделать на листочке в клетку.
Прямоугольник – родственник квадрата, который отличается тем, что имеет одинаковые противоположные стороны. Так же, как и у квадрата, у прямоугольника все равны 90 градусам.
Можно найти множество предметов, имеющих форму прямоугольника: шкафы, бытовая техника, двери, мебель.
В природе форму треугольника имеют горы и некоторые деревья. Из ближайшего окружения малышей можно привести в пример треугольную крышу дома, различные дорожные знаки.
В форме треугольника были построены некоторые древние сооружения, например храмы и пирамиды.
Овал – это круг, вытянутый с двух сторон. Формой овала обладают, например: яйцо, орехи, многие овощи и фрукты, человеческое лицо, галактики т. д.
Овал в объеме называется эллипсом. Даже Земля сплюснута с полюсов – эллипсовидная.
Ромб
Ромб – тот же квадрат, только вытянутый, т. е. имеет два тупых угла и пару острых.
Изучать ромб можно с помощью наглядных пособий – нарисованной картинки или объемного предмета.
Приемы запоминания
Геометрические фигуры по названиям запомнить несложно. В игру их изучение для детей можно превратить, применив следующие идеи:
- Купите детскую книжку с картинками, в которой будут веселые и красочные рисунки фигур и их аналогии из окружающего мира.
- Нарежьте из разноцветного картона побольше всяких фигурок, заламинируйте их скотчем и используйте как конструктор – очень много интересных сочетаний можно выложить, комбинируя разные фигурки.
- Купите линейку с отверстиями в форме круга, квадрата, треугольника и других – для детей, которые уже дружат с карандашами, рисунки с помощью такой линейки – интереснейшее занятие.
Можно придумать много возможностей научить малышей знать названия геометрических фигур. Все способы хороши: рисунки, игрушки, наблюдения за окружающими предметами. Начните с малого, постепенно усложняя информацию и задания. Вы не ощутите, как пролетит время, а малыш обязательно порадует вас успехами в скором.
Геометрические объемные фигуры — это твердые тела, которые занимают ненулевой объем в евклидовом (трехмерном) пространстве. Эти фигуры изучает раздел математики, который носит название «пространственная геометрия». Знания о свойствах объемных фигур применяются в инженерии и в науках о природе. Рассмотрим в статье вопрос, геометрические объемные фигуры и их названия.
Геометрические объемные тела
Поскольку эти тела имеют конечную размерность в трех пространственных направлениях, то для их описания в геометрии используют систему из трех координатных осей. Эти оси обладают следующими свойствами:
- Они ортогональны друг другу, то есть перпендикулярны.
- Эти оси нормализированы, то есть базисные вектора каждой оси имеют одинаковую длину.
- Любая из осей координат — это результат векторного произведения двух других.
Говоря о геометрических объемных фигурах и их названиях, следует отметить, что все они принадлежат к одному из 2-х больших классов:
- Класс полиэдров. Эти фигуры, исходя из названия класса, имеют прямые ребра и плоские грани. Грань — это плоскость, которая ограничивает фигуру. Место соединения двух граней называется ребром, а точка соединения трех граней — это вершина. К полиэдрам относятся геометрическая фигура куб, тетраэдры, призмы, пирамиды. Для этих фигур справедлива теорема Эйлера, которая устанавливает связь между числом сторон (С), ребер (Р) и вершин (В) для каждого полиэдра. Математически эта теорема записывается так: С + В = Р + 2.
- Класс круглых тел или тел вращения. Эти фигуры имеют хотя бы одну поверхность, образующую их, изогнутой формы. Например, шар, конус, цилиндр, тор.
Что касается свойств объемных фигур, то следует выделить два самых важных из них:
- Наличие определенного объема, который фигура занимает в пространстве.
- Наличие у каждой объемной фигуры площади поверхности.
Оба свойства для каждой фигуры описываются конкретными математическими формулами.
Рассмотрим ниже самые простые геометрические объемные фигуры и их названия: куб, пирамиду, призму, тетраэдр и шар.
Фигура куб: описание
Под геометрической фигурой куб понимают объемное тело, которое образовано 6-тью квадратными плоскостями или поверхностями. Также эту фигуру называют правильный гексаэдр, поскольку она имеет 6 сторон, или прямоугольный параллелепипед, так как он состоит из 3-х пар параллельных сторон, которые взаимно перпендикулярны друг другу. Называют куб и у которой основание является квадратом, а высота равна стороне основания.
Поскольку куб является многогранником или полиэдром, то для него можно применить теорему Эйлера, чтобы определить число его ребер. Зная, что число сторон равно 6, а вершин у куба 8, число ребер равно: Р = С + В — 2 = 6 + 8 — 2 = 12.
Если обозначить буквой «a» длину стороны куба, тогда формулы для его объема и площади поверхности будут иметь вид: V = a 3 и S = 6*a 2 , соответственно.
Фигура пирамида
Пирамида — это полиэдр, который состоит из простого многогранника (основание пирамиды) и треугольников, которые соединяются с основанием и имеют одну общую вершину (вершина пирамиды). Треугольники называются боковыми гранями пирамиды.
Геометрические характеристики пирамиды зависят от того, какой многоугольник лежит в ее основании, а также от того, является ли пирамида прямой или косой. Под прямой пирамидой понимают такую пирамиду, для которой перпендикулярная основанию прямая, проведенная через вершину пирамиды, пересекает основание в ее геометрическом центре.
Одной из простых пирамид является четырехугольная прямая пирамида, в основании которой лежит квадрат со стороной «a», высота этой пирамиды «h». Для этой фигуры пирамиды объем и площадь поверхности будут равны: V = a 2 *h/3 и S = 2*a*√(h 2 +a 2 /4) + a 2 , соответственно. Применяя теорему Эйлера для нее, с учетом того, что число граней равно 5, и число вершин равно 5, получаем количество ребер: Р = 5 + 5 — 2 = 8.
Фигура тетраэдр: описание
Под геометрической фигурой тетраэдр понимают объемное тело, образованное 4-мя гранями. Исходя из свойств пространства, такие грани могут представлять только треугольники. Таким образом, тетраэдр является частным случаем пирамиды, у которой в основании лежит треугольник.
Если все 4-ре треугольника, образующие грани тетраэдра, являются равносторонними и равными между собой, то такой тетраэдр называется правильным. Этот тетраэдр имеет 4 грани и 4 вершины, число ребер составляет 4 + 4 — 2 = 6. Применяя стандартные формулы из плоской геометрии для рассматриваемой фигуры, получаем: V = a 3 * √2/12 и S = √3*a 2 , где a — длина стороны равностороннего треугольника.
Интересно отметить, что в природе некоторые молекулы имеют форму правильного тетраэдра. Например, молекула метана CH 4 , в которой атомы водорода расположены в вершинах тетраэдра, и соединены с атомом углерода ковалентными химическими связями. Атом углерода находится в геометрическом центре тетраэдра.
Простая в изготовлении форма фигуры тетраэдр используется также в инженерии. Например, тетраэдрическую форму используют при изготовлении якорей для кораблей. Отметим, что космический зонд НАСА, Mars Pathfinder, который совершил посадку на поверхность Марса 4 июля 1997 года, также имел форму тетраэдра.
Фигура призма
Эту геометрическую фигуру можно получить, если взять два многогранника, расположить их параллельно друг другу в разных плоскостях пространства, и соединить их вершины соответствующим образом между собой. В итоге получится призма, два многогранника называются ее основаниями, а поверхности, соединяющие эти многогранники, будут иметь форму параллелограммов. Призма называется прямой, если ее боковые стороны (параллелограммы) являются прямоугольниками.
Призма — это полиэдр, поэтому для нее верна Например, если в основании призмы лежит шестиугольник, тогда, количество сторон у призмы равно 8, а количество вершин — 12. Число ребер будет равно: Р = 8 + 12 — 2 = 18. Для прямой призмы высотой h, в основании которой лежит правильный шестиугольник со стороной a, объем равен: V = a 2 *h*√3/4, площадь поверхности равна: S = 3*a*(a*√3 + 2*h).
Говоря о простых геометрических объемных фигурах и их названиях, следует упомянуть шар. Под объемным телом под названием шар понимают тело, которое ограничено сферой. В свою очередь, сфера — это совокупность точек пространства, равноудаленных от одной точки, которая называется центром сферы.
Поскольку шар относится к классу круглых тел, то для него не существует понятия о сторонах, ребрах и вершинах. сферы, ограничивающей шар, находится по формуле: S = 4*pi*r 2 , а объем шара можно вычислить по формуле: V = 4*pi*r 3 /3, где pi — число пи (3,14), r — радиус сферы (шара).
Геометрические фигуры плоские и объёмные
Цели урока:
- Познавательная: создать условия для ознакомления с понятиями плоские и объёмные геометрические фигуры, расширить представление о видах объёмных фигур, научить определять вид фигуры, сравнивать фигуры.
- Коммуникативная: создать условия для формирования умения работать в парах, группах; воспитание доброжелательного отношения друг к другу; воспитывать у учащихся взаимопомощь, взаимовыручку.
- Регулятивная: создать условия для формирования планировать учебную задачу, выстраивать последовательность необходимых операций, корректировать свою деятельность.
- Личностная: создать условия для развития вычислительных навыков, логического мышления, интереса к математике, формирования познавательных интересов, интеллектуальных способностей учащихся, самостоятельность в приобретении новых знаний и практических умений.
Планируемые результаты:
личностные:
- формирование познавательных интересов, интеллектуальных способностей учащихся; формирование ценностных отношений друг к другу;
самостоятельность в приобретении новых знаний и практических умений; - формирование умений воспринимать, перерабатывать полученную информацию, выделять основное содержание.
метапредметные:
- овладение навыками самостоятельного приобретения новых знаний;
- организация учебной деятельности, планирования;
- развитие теоретического мышления на основе формирования умений устанавливать факты.
предметные:
- усвоить понятия плоские и объёмные фигуры, научиться сравнивать фигуры, находить плоские и объёмные фигуры в окружающей действительности, научиться работать с развёрткой.
УУД общенаучные:
- поиск и выделение необходимой информации;
- применение методов информационного поиска, осознанное и произвольное построение речевого высказывания в устной форме.
УУД личностные:
- оценивать свои и чужие поступки;
- проявление доверия, внимательности, доброжелательности;
- умение работать в паре;
- выражать положительное отношение к процессу познания.
Оборудование: учебник, интерактивная доска, смайлики, модели фигур, развёртки фигур, светофоры индивидуальные, прямоугольники -средства обратной связи, Толковый словарь.
Тип урока: изучение нового материала.
Методы: словесные, исследовательские, наглядные, практические.
Формы работы: фронтальная, групповая, парная, индивидуальная.
1. Организация начала урока.
Утром солнышко взошло.
Новый день нам принесло.
Сильными и добрыми
Новый день встречаем мы.
Вот мои руки, я раскрываю
Их навстречу солнцу.
Вот мои ноги, они твердо
Стоят на земле и ведут
Меня верной дорогой.
Вот моя душа, я раскрываю
Её навстречу людям.
Наступи, новый день!
Здравствуй, новый день!
2. Актуализация знаний.
Создадим хорошее настроение. Улыбнитесь мне и друг другу, садитесь!
Чтобы дойти до цели, надо прежде всего идти.
Перед вами высказывание, прочитайте. Что означает это высказывание?
(Чтобы чего-то добиться, нужно что-то делать)
— И действительно, ребята, попадающим в цель может стать только тот, кто настраивает себя на собранность и организованность своих действий. И вот я надеюсь, что мы с вами на уроке достигнем своей цели.
— Начнем наш путь к достижению цели сегодняшнего урока.
3. Подготовительная работа.
— Посмотрите на экран. Что вы видите? (Геометрические фигуры)
Назовите эти фигуры.
— Какое задание, вы можете предложить своим одноклассникам? (разделите фигуры на группы)
— У вас на партах лежат карточки с этими фигурами. Выполните это задание в парах.
— По какому признаку вы разделили эти фигуры?
- Плоские и объемные фигуры
- По основаниям объемных фигур
— С какими фигурами мы уже работали? Что учились находить у них? Какие фигуры встречаются нам на геометрии впервые?
— Какая же тема нашего урока? (Учитель добавляет слова на доске: объёмные, на доске появляется тема урока: Объёмные геометрические фигуры.)
— Чему мы должны научиться на уроке?
4. «Открытие» нового знания в практической исследовательской работе.
(Учитель показывает куб и квадрат.)
— Чем они похожи?
— Можно ли сказать, что это одно и тоже?
— Чем же отличается куб от квадрата?
— Давайте проведём опыт. (Ученики получают индивидуальные фигуры – куб и квадрат.)
— Попробуем приложить квадрат к плоской поверхности порты. Что видим? Он весь (целиком) лёг на поверхность парты? Вплотную?
! Как назовём фигуру, которую можно целиком расположить на одной плоской поверхности? (Плоской фигурой.)
— Можно ли куб полностью (весь) прижать к парте? Проверим.
— Можно ли назвать куб плоской фигурой? Почему? Есть ли пространство между рукой и партой?
! Значит, что мы можем сказать о кубе? (Занимает определённое пространство, является объёмной фигурой.)
ВЫВОДЫ: Чем же отличаются плоские и объёмные фигуры? (Учитель вывешивает на доске выводы.)
ПЛОСКИЕ
- Можно целиком расположить на одной плоской поверхности.
ОБЪЁМНЫЕ
- занимают определённое пространство,
- возвышаются над плоской поверхностью.
Объёмные фигуры: пирамида, куб, цилиндр, конус, шар, параллелепипед.
4. Открытие новых знаний.
1. Назовите фигуры, изображенные на рисунке.
— Какую форму имеют основания этих фигур?
— Какие еще формы можно увидеть на поверхности куба и призмы?
2. Фигуры и линии на поверхности объемных фигур имеют свои названия.
— Предложите свои названия.
— Боковые стороны, образующие плоскую фигуру называются гранями. А боковые линии – рёбра. Углы многоугольников – вершины. Это элементы объемных фигур.
— Ребята, а как вы думаете, как называются такие объемные фигуры, у которых много граней? Многогранники.
Работа с тетрадями: чтение нового материала
Соотнесение реальных объектов и объёмных тел.
— А теперь подберите для каждого предмета ту объёмную фигуру, на которую он похож.
+ Коробка – параллелепипед.
- Яблоко – шар.
- Пирамидка – пирамида.
- Банка – цилиндр.
- Горшок из-под цветка — конус.
- Колпачок – конус.
- Ваза – цилиндр.
- Мяч – шар.
5. Физминутка.
1. Представьте себе большой шар, погладьте его со всех сторон. Он большой, гладкий.
(Ученики «обхватывают» руками и гладят воображаемый шар.)
А теперь представьте себе конус, дотроньтесь до его вершины. Конус растёт вверх, вот он уже выше вас. Допрыгните до его вершины.
Представьте, что вы внутри цилиндра, похлопайте по его верхнему основанию, потопайте по нижнему, а теперь руками по боковой поверхности.
Цилиндр стал маленькой подарочной коробочкой. Представьте, что вы сюрприз, который находится в этой коробочке. Я нажимаю кнопку и… сюрприз выскакивает из коробочки!
6. Групповая работа:
(Каждая группа получает одну из фигур: куб, пирамиду, параллелепипед.Полученную фигуру дети изучают, выводы записывают в подготовленную учителем карточку.)
Группа 1. (Для изучения параллелепипеда)
Эта объемная фигура называется ______________ . Его стороны (грани) похожи на плоскую фигуру ______________ . Их ровно ______________ . Еще у этой фигуры есть углы – вершины, их ______________ . |
Группа 2. (Для изучения пирамиды)
Эта объемная фигура называется ______________ . Его стороны (грани) похожи на плоскую фигуру ______________ . Их ровно ______________ . Еще у этой фигуры есть углы – вершины, их ______________ . |
Группа 3. (Для изучения куба)
Эта объемная фигура называется ______________ . Его стороны (грани) похожи на плоскую фигуру ______________ . Их ровно ______________ . Еще у этой фигуры есть углы – вершины, их ______________ . |
Далее каждая группа выступает, представляя свою объемную фигуру другим.
7. Решение кроссворда
8. Итог урока. Рефлексия деятельности.
Решение кроссворда в презентации
— Что нового вы для себя сегодня открыли?
+ Все геометрические фигуры можно разделить на объёмные и плоские.
+ А я узнал названия объёмных фигур
Какие геометрические фигуры простейшие?
☰
К простейшим геометрическим фигурам относятся точка, прямая, отрезок, луч, полуплоскость и угол.
Даже среди простейших фигур выделяется самая простейшая — это точка. Все остальные фигуры состоят из множества точек. В геометрии принято обозначать точки прописными (большими) латинскими буквами. Например, точка A, точка L.
Прямая — это бесконечная линия, на которой если взять две любые точки, то кратчайшее расстояние между ними будет проходить как раз по этой прямой. Прямые чаще всего обозначают одной строчной (маленькой) латинской буквой. Например, прямая a, прямая b. Однако в некоторых случаях и двумя большими. Например, прямая AB, прямая CD.
Отрезок — это часть прямой вместе с ограничивающими эту часть точками. То есть отрезок состоит из двух точек, лежащих на прямой, и участка этой прямой между этими двумя точками. Точки отрезка называют концами отрезка. Понятно, что две точки не должны совпадать, то есть лежать в одном и том же месте на прямой. Иначе отрезок будет иметь нулевую длину и по-сути будет точкой. Обозначают отрезки двумя большими буквами, которыми обозначаются концы отрезка. Например, если концами отрезка будут точки A и B, то отрезок будет обозначен как AB.
Если прямая поделена на две части одной точкой, то на ней можно выделить два луча. Один исходит из точки в одну сторону, а другой в другую. Таким образом, если отрезок ограничен с обоих концов, то луч только с одной, а другая сторона луча бесконечна, как у прямой. Обозначают лучи также как и прямые: либо одной маленькой буквой, либо двумя большими.
Полуплоскость — это часть плоскости, лежащая с той или иной стороны от прямой. Отсюда следует, что прямая делит плоскость на две полуплоскости, а сама является их границей.
Угол, состоит из точки и отходящих от нее двух лучей. Такое понятие угла близко к тому, как выше было введено понятие о луче: точка делит прямую на два луча. Но в том случае речь шла о том, что оба луча лежат на одной прямой. А здесь это далеко не обязательно. Два луча могут принадлежать разным прямым, главное — это то, что точка, из которой они исходят, является для них общей. Эта точка называется вершиной угла, в то время как лучи называются сторонами угла.
Углы обозначают по-разному — одной буквой, двумя, тремя. Но всегда перед ними стоит знак ∠ (угол). Например ∠ABC, ∠B, ∠ac.
Определение и значение рисунка | Dictionary.com
цифровой символ, особенно арабская цифра.
сумма или значение, выраженное числами.
цифр, использование чисел в расчетах; арифметика: плохо разбираться в цифрах.
письменный символ, отличный от буквы.
форма или форма, определяемая очертаниями или внешними поверхностями: должна быть круглая, квадратная или кубическая по фигуре.
телосложение или телосложение: стройная или изящная фигура.
отдельная телесная форма или лицо со ссылкой на форму или внешний вид: в дверном проеме стояла высокая фигура.
персонаж или персонаж, особенно выдающийся: хорошо известная фигура в обществе.
публичный имидж или присутствие человека: неоднозначный политический деятель.
внешний вид или впечатление, производимое человеком, а иногда и вещью: сделать заметную фигуру в финансовых кругах; представить жалкую цифру бедности.
изображение, изобразительное или скульптурное, особенно человеческой формы: фриз был окаймлен фигурами людей и животных.
инструктивный или иллюстративный рисунок или диаграмма из книги или руководства пользователя: Чтобы прикрепить колеса к основанию шкафа, см. Рисунок 4.
эмблема, шрифт или символ: Голубь — это фигура мира.
текстурный узор, как на ткани или дереве: драпировки с тисненым шелковым рисунком.
отдельное движение или разделение танца.
движение, узор или серия движений в фигурном катании.
Музыка. короткая последовательность музыкальных нот в виде мелодии или группы аккордов, производящих единое законченное и отчетливое впечатление.
Геометрия. комбинация геометрических элементов, расположенных в определенной форме или форме: круг, квадрат и многоугольник являются плоскими фигурами.Сфера, куб и многогранник — твердые фигуры.
Логика. форма категорического силлогизма по отношению к относительному положению среднего члена.
Оптика. точная кривая, необходимая на поверхности оптического элемента, особенно зеркала или корректирующей пластины отражающего телескопа.
естественный узор на распиленной деревянной поверхности, образованный пересечением сучков, капов, годичных колец и т. Д.
фантазм или иллюзия.
Фигур речи | Словарь
Картинка стоит тысячи слов.
Образный язык : «фигура» означает «рисунок» или «рисунок». Образный язык создает картины в сознании читателя или слушателя. Эти картинки помогают передать смысл быстрее и ярче, чем одни слова.
Мы используем образы речи на «образном языке», чтобы добавить цвета и интереса и пробудить воображение. Образный язык присутствует везде, от классических произведений, таких как Шекспир или Библия, до повседневной речи, поп-музыки и телевизионных рекламных роликов.Это заставляет читателя или слушателя использовать свое воображение и понимать гораздо больше, чем простые слова.
Образный язык является противоположностью буквального языка . Буквальный язык означает именно то, что он говорит. Образный язык означает нечто иное (и обычно большее, чем) то, что он говорит на поверхности:
- Он пробежал быстро . (буквальный)
- Он пробежал как ветер . (переносное)
В приведенном выше примере «подобный ветру» — это фигура речи (в данном случае сравнение).Важно понимать разницу между буквальным и образным языком. Существует множество общеупотребительных речевых образов, которые вы можете выучить наизусть. В других случаях писатели и ораторы могут изобретать свои собственные фигуры речи. Если вы не узнаете их как фигуры речи и думаете, что они буквальные, вам будет трудно понять язык.
В этом уроке мы рассмотрим четыре распространенных типа речи:
Simile
Оборот речи, который говорит, что одно похоже на другое другое
Метафора
Оборот речи, который говорит, что одно — другое другое
Гипербола
Оборот речи, использующий преувеличенные или экстравагантные высказывания для создания сильного эмоционального отклика.
Оксюморон
Оборот речи, сознательно использующий две противоположные идеи
Фигура речи — Примеры и определение фигуры речи
Определение фигуры речи
Фигура речи — это слово или фраза, которые используются не буквальным образом для создания эффекта.Этот эффект может быть риторическим, как в преднамеренном расположении слов для достижения чего-то поэтического, или образным, как в использовании языка, чтобы предложить визуальную картину или сделать идею более яркой. В целом, фигуры речи функционируют как литературные средства из-за их выразительного использования языка. Слова используются иначе, чем их буквальное значение или типичный способ применения.
Например, Маргарет Этвуд использует образы речи в своем стихотворении «Ты вписываешься в меня» как средство достижения поэтического смысла и создания яркой картины для читателя.
ты вписываешься в меня
, как крючок в ушко
рыболовный крючок
открытый глаз
Сравнение в первых двух строках дает сравнение между тем, как «ты» вписывается в поэта, как застежка на крючок и глаз, возможно, для одежды. Это пример риторического эффекта в том смысле, что формулировка тщательно передает идею двух вещей, которые должны соединяться друг с другом. Во вторых двух строках формулировка уточняется, добавляя «рыба» к «крючку» и «открытый» к «глазу», что вызывает неприятный и даже жестокий образ.Описание поэта крючков и глаз в стихотворении не дано буквально. Тем не менее, использование образного языка позволяет поэту выражать два очень разных значения и изображения, которые улучшают интерпретацию стихотворения за счет контраста.
Типы фигур речи
Термин фигура речи охватывает широкий спектр литературных приемов, приемов и других форм образного языка, некоторые из которых включают:
Общие примеры фигур речи, используемых в разговоре
Многие люди используют образы речи в разговоре, чтобы прояснить или подчеркнуть то, что они имеют в виду.Вот несколько распространенных примеров разговорных фигур речи:
Гипербола
Гипербола — это фигура речи, в которой используется крайнее преувеличение, чтобы подчеркнуть определенное качество или особенность.
- У меня миллион дел.
- Этот чемодан весит тонну.
- Эта комната представляет собой ледяной ящик.
- Я умру, если он не пригласит меня на свидание.
- Я слишком беден, чтобы обращать внимание.
Недосказанность
Недосказанность — это фигура речи, вызывающая меньше эмоций, чем можно было бы ожидать при реакции на что-либо.Такое преуменьшение реакции является сюрпризом для читателя и обычно имеет эффект иронии.
- Я слышал, что у нее рак, но это не страшно.
- Джо получил работу своей мечты, так что это не так уж и плохо.
- Сью выиграла в лотерею, так что она немного взволнована.
- Этому обреченному дому просто нужно покрасить.
- Ураган принес с собой несколько ливневых дождей.
Парадокс
Парадокс — это фигура речи, которая кажется противоречивой, но на самом деле раскрывает что-то правдивое.
- Чтобы сэкономить, нужно потратить деньги.
- Я понял, что ничего не знаю.
- Чтобы быть добрым, нужно быть жестоким.
- Ситуация становится хуже, прежде чем станет лучше.
- Единственное правило — игнорировать все правила.
Каламбур
Каламбур — это фигура речи, которая содержит «игру» слов, например, использование слов, которые означают одно, чтобы означать что-то другое, или слов, которые звучат одинаково, как средство изменения значения.
- Спящего быка называют бульдозером.
- Бейсболисты едят на домашних тарелках.
- Белые медведи голосуют на Северном голосовании.
- Рыбы умны, потому что они путешествуют стаями.
- Один медведь сказал другому, что жизнь без них была бы гризли.
Оксюморон
Оксюморон — это фигура речи, которая соединяет две противоположные идеи, обычно в двух словах, чтобы создать противоречивый эффект.
- открытый секрет
- Наедине вместе
- истинная ложь
- управляемый хаос
- довольно уродливо
Распространенные примеры рисунков речи в письме
Писатели также используют фигуры речи в своей работе как средство описания или развития имея в виду.Вот несколько распространенных примеров фигур речи, используемых в письме:
Simile
Simile — это фигура речи, в которой две разные вещи сравниваются друг с другом с использованием терминов «как» или «как».
- Она красивая, как картинка.
- Я доволен как пунш.
- Он силен, как вол.
- Ты хитрый как лис.
- Я счастлив как моллюск.
Метафора
Метафора — это фигура речи, которая сравнивает две разные вещи без использования терминов «подобное» или «как».
- Он рыба вне воды.
- Она звезда на небе.
- Мои внуки — цветы моего сада.
- Эта история — музыка для моих ушей.
- Ваши слова — это побитый рекорд.
Эвфемизм
Эвфемизм — это фигура речи, которая относится к образному языку, предназначенному для замены слов или фраз, которые в противном случае считались бы резкими, невежливыми или неприятными.
- Прошлой ночью дедушка Джо скончался (умер).
- Она начала чувствовать себя за холмом (старая).
- Молодые люди интересуются птицами и пчелами (сексом).
- Надо припудрить нос (сходить в ванную).
- Наша компания решила вас отпустить (уволить).
Персонификация
Персонификация — это фигура речи, которая приписывает человеческие характеристики чему-то, что не является человеческим.
- Слышал свист ветра.
- Вода танцевала у меня в окне.
- Моя собака говорит мне начать ужин.
- Луна мне улыбается.
- Ее будильник гудел на заднем плане.
Записывающая фигура речи
Как литературный прием, фигуры речи усиливают значение написанных и произносимых слов. В устном общении фигуры речи могут прояснить, улучшить описание и создать интересное использование языка. В письменной форме, когда фигуры речи используются эффективно, эти устройства повышают способность писателя к описанию и выражению, так что читатели лучше понимают, что передается.
Важно, чтобы писатели создавали эффективные формы речи, чтобы читатель не потерял смысл. Другими словами, простая перестановка или сопоставление слов не так эффективна, как преднамеренная формулировка и формулировка. Например, преувеличение «Я мог бы съесть лошадь» эффективно показывает сильный голод, используя образный язык. Если бы писатель попробовал преувеличить «Я мог бы съесть сарай из лакрицы», образный язык окажется неэффективным, и смысл для большинства читателей потеряется.
Вот несколько способов, которыми писатели извлекают выгоду из включения фигур речи в свою работу:
Образец речи как художественное использование языка
Эффективное использование фигур речи — одна из величайших демонстраций художественного использования языка. Возможность создавать поэтический смысл, сравнения и выражения с помощью этих литературных приемов — вот как писатели формируют искусство с помощью слов.
Фигура речи как развлечение для читателя
Эффективные фигуры речи часто повышают развлекательную ценность литературного произведения для читателя.Многие образы речи вызывают юмор или иронию в отличие от буквальных выражений. Это может привлечь внимание читателя к литературному произведению.
Образец речи как памятный опыт для читателя
Используя эффективные фигуры речи для улучшения описания и смысла, писатели делают свои произведения более запоминающимися для читателей как опыт. Писатели часто могут поделиться трудной истиной или передать конкретную концепцию образным языком, чтобы читатель лучше понимал материал и тот, который остается в памяти.
Примеры фигур речи в литературе
В литературных произведениях используются бесчисленные фигуры речи, которые используются в качестве литературных приемов. Эти фигуры речи придают литературе значение и демонстрируют силу и красоту образного языка. Вот несколько примеров фигур речи в известных литературных произведениях:
Пример 1:
Великий Гэтсби (Ф. Скотт Фицджеральд)В его голубых садах мужчины и девушки приходили и уходили мотыльками среди шепота и шампанское и звезды.
Фитцджеральд использует здесь сравнение как образ речи, чтобы сравнить гостей вечеринки Гэтсби с молью. Образы, использованные Фитцджеральдом, отличаются изысканностью и красотой и создают эфемерную атмосферу. Однако уподобление гостей Гэтсби мотылькам также укрепляет идею о том, что их привлекают только ощущения от вечеринок и что они уйдут, не оказав никакого реального воздействия или связи. Это сравнение, как фигура речи, подчеркивает темы поверхностности и быстротечности романа.
Пример 2:
Сто лет одиночества (Габриэль Гарсиа Маркес)Оба одновременно описали, что там всегда март и всегда понедельник, а затем они поняли, что Хосе Аркадио Буэндиа не был таким сумасшедшим, как тот. семья сказала, но что он был единственным, кто имел достаточно ясности, чтобы почувствовать истину того факта, что время тоже спотыкалось и имело несчастные случаи, и поэтому могло расколоться и оставить увековеченный фрагмент в комнате.
В этом отрывке Гарсиа Маркес использует персонификацию как фигуру речи.Время олицетворяется как сущность, которая «споткнулась» и «попала в аварию». Это эффективное использование образного языка в том смысле, что это олицетворение времени указывает на уровень человеческой слабости, который редко ассоциируется с чем-то столь измеряемым. Кроме того, это эффективно в романе как фигура речи, потому что время имеет большое влияние на сюжет и персонажей рассказа. Персонифицированное таким образом значение времени в романе усиливается до такой степени, что оно само по себе является персонажем.
Пример 3:
Фаренгейт 451 (Рэй Брэдбери)Книга — это заряженное ружье в соседнем доме… Кто знает, кто может стать целью начитанного человека?
В этом отрывке Брэдбери использует метафору как фигуру речи, чтобы сравнить книгу с заряженным ружьем. Это эффективный литературный прием для этого романа, потому что в рассказе книги считаются орудием свободы мысли, и владение ими незаконно. Конечно, Брэдбери заявляет, что книга — это заряженное ружье, только в переносном, а не в буквальном смысле.Эта метафора особенно сильна, потому что сравнение маловероятно; книги обычно не считаются опасным оружием. Тем не менее, сравнение имеет определенный уровень логики в контексте истории, в которой стремление к знаниям превращается в оружие и криминализируется.
сообщить об этом объявлении20 лучших ораторов
Фигура речи — это риторический прием, позволяющий добиться особого эффекта за счет особого использования слов. Хотя есть сотни фигур речи, здесь мы сосредоточимся на 20 лучших примерах.
Вы, вероятно, помните многие из этих терминов на уроках английского языка. Образный язык часто ассоциируется с литературой и, в частности, с поэзией. Осознаем мы это или нет, но каждый день мы используем образы речи в наших письмах и разговорах.
Например, такие распространенные выражения, как «влюбиться», «ломать голову» и «подниматься по лестнице успеха», являются метафорами — наиболее распространенными фигурами. Точно так же мы полагаемся на сравнения при проведении явных сравнений («легкие как перышко») и гиперболы, чтобы подчеркнуть точку («Я голодаю!»).
Вы знали?
Образы речи также известны как фигур риторики, фигур стиля, риторических фигур, образного языка, и схем .
Смотреть сейчас: Объяснение распространенных форм речи
Использование оригинальных речевых образов в нашем письме — это способ передать значения свежими, неожиданными способами. Они могут помочь нашим читателям понять и оставаться заинтересованными в том, что мы говорим.
Аллитерация
Повторение начального согласного звука.
Пример: Она продает ракушки на берегу моря.
Анафора
Повторение одного и того же слова или фразы в начале следующих друг за другом предложений или стихов.
Пример : К сожалению, я оказался не в том месте не в то время не в тот день.
Антитезис
Сопоставление противоположных идей в сбалансированных фразах.
Пример: Как сказал Авраам Линкольн: «У людей, у которых нет пороков, очень мало добродетелей.»
Апостроф
Прямое обращение к несуществующему человеку или неодушевленному объекту, как к живому существу.
Пример: «О, глупая машина, ты никогда не работаешь, когда мне нужно», — вздохнул Берт.
Assonance
Идентичность или подобие звука между внутренними гласными в соседних словах.
Пример: Как дела, коричневая корова?
Хиазм
Словесный паттерн, в котором вторая половина выражения уравновешивается первой, но с перевернутыми частями.
Пример: Знаменитый повар сказал, что люди должны жить, чтобы есть, а не есть, чтобы жить.
Евфемизм
Замена безобидного термина на термин, который считается явно оскорбительным.
Пример: «Мы учим нашего малыша ходить на горшок», — сказал Боб.
Гипербола
Экстравагантное заявление; использование преувеличенных терминов с целью выделения или усиления эффекта.
Пример: У меня много дел, когда я прихожу домой.
Ирония
Использование слов для передачи значения, противоположного их буквальному значению. Также утверждение или ситуация, в которой значение противоречит внешнему виду или представлению идеи.
Пример: «О, я люблю тратить большие деньги», — сказал мой отец, известный скупердяй.
Литотес
Фигура речи, состоящая из преуменьшения, в котором утвердительное выражается отрицанием своей противоположности.
Пример: Миллион долларов — это не маленькая сумма.
Метафора
Подразумеваемое сравнение двух непохожих вещей, имеющих что-то общее.
Пример: «Весь мир — сцена».
Метонимия
Фигура речи, в которой слово или фраза заменяются другим, с которым они тесно связаны; также риторическая стратегия косвенного описания чего-либо посредством ссылки на вещи вокруг этого.
Пример: «Этот мягкий костюм с портфелем — плохой повод для продавца», — сердито сказал менеджер.
Звукоподражание
Использование слов, имитирующих звуки, связанные с объектами или действиями, к которым они относятся.
Пример: Грохот грома напугал мою бедную собаку.
Оксюморон
Фигура речи, в которой встречаются несочетаемые или противоречивые термины.
Пример: «Он засунул в рот огромную креветку».
Парадокс
Утверждение, которое кажется противоречащим самому себе.
Пример: «Это начало конца», — сказал Иа, всегда пессимист.
Персонализация
Фигура речи, в которой неодушевленный предмет или абстракция наделены человеческими качествами или способностями.
Пример: Этот кухонный нож укусит вашу руку, если вы не будете обращаться с ним осторожно.
Каламбур
Игра слов, иногда на разных смыслах одного и того же слова, а иногда на одинаковом значении или звучании разных слов.
Пример: Джесси оторвалась от завтрака и сказала: «Вареное яйцо каждое утро трудно превзойти».
По сравнению с
Заявленное сравнение (обычно состоящее из слов «подобное» или «как») между двумя принципиально разными вещами, обладающими определенными общими качествами.
Пример: Роберто был белым как полотно после того, как вышел из фильма ужасов.
Synecdoche
Фигура речи, в которой часть используется для представления целого.
Пример: Тина изучает азбуку в дошкольном учреждении.
Занижение
Фигура речи, в которой писатель или оратор намеренно делает ситуацию менее важной или серьезной, чем она есть на самом деле.
Пример: «Можно сказать, что Бэйб Рут неплохо играла в мяч», — сказал репортер, подмигнув.
Список пяти типов речевых образов
В отличие от буквального языка, который точно указывает, что он означает, образный язык косвенно задействует воображение.Образы речи сравнивают понятия с более знакомыми объектами или понятиями. Они могут вызывать эмоциональные реакции. Пять важных типов речевых фигур включают гиперболу, символы, сравнение, персонификацию и метафору.
Гипербола
Гипербола используется для преувеличения или подчеркивания концепции. Эти описания не предназначены для буквально. Они привыкли преувеличивать, иногда до невозможности. Пример гиперболы: «Она похоронила меня в дебатах». В формальном письме не используются преувеличения, в отличие от творческого письма.
Символ
Символы — это изображения, не имеющие буквального значения; они означают нечто иное, чем то, чем они кажутся на поверхности. В поэзии и творчестве широко используется символизм. «Голубь» в стихотворении может на самом деле символизировать мир или чистоту, а не сама птица. Некоторые символы условны и легко понимаются, тогда как другие могут быть частными и эзотерическими, как в поэзии Уильяма Батлера Йейтса.
Simile
Сравнение используется для сравнения двух концепций или объектов, которые не похожи друг на друга.Они демонстрируют, что даже непохожие предметы имеют некоторое сходство. Их также можно использовать, чтобы сделать описание особенно ярким и захватывающим. Сравнения обычно используют «нравится», «как», «чем» или «напоминает» для сравнения двух элементов. Пример сравнения: «Мальчик рос, как сорняк».
Персонификация
Персонификация рассматривает животных и неодушевленные предметы, как если бы они были людьми с человеческими характеристиками. Обычно используется в аллегориях, персонификация позволяет читателям и слушателям относиться к животным и объектам, поскольку они воображают, что они реагируют или чувствуют, как это сделал бы человек.Пример персонификации: «гневное небо». Здесь человеческая эмоция, гнев переносится на что-то неживое.
Метафора
Метафоры используются для обозначения того, что одно есть другое — например, во фразе «Джим — цыпленок». В метафорах значение не буквальное, но первое, в данном случае «Джим», имеет общие характеристики со вторым, «цыпленком». Обычно используемые в повседневном языке, метафоры также распространены в стихах и творчестве.Однако избегайте использования двух метафор в предложении. Смешанная метафора часто создает путаницу и нечеткое изображение.
Техники > Использование языка> Фигуры выступления> Полный список Образы речи (или «риторические тропы») — это способы употребления слов, которые могут показаться необычными, но имеют специфический и желаемый эффект.Читаемые как «нормальные слова», они часто нарушают нормальное состояние. правила грамматики, но, тем не менее, их можно понять. Они распространены в поэзии. и красноречивая речь. «Фигуры речи» часто используются в общем, и большой список здесь включает не только фигуры речи, но и более широкий диапазон. риторических и лингвистических приемов.
Это четыре классические классификации фигур речи, которые изменяют текст: добавление, пропуск, замена и расположение.Часто бывает значительным где эти изменения происходят, в начале, середине или конце слова, фраза или предложение. В некотором смысле этот список немного натянут в использовании термина «фигура» для обозначения описать все. На самом деле многие из них на самом деле больше устройств, чем цифры. Но потом «фигура речи» обычно используется для обозначения многих форм и была принята таким образом здесь. См. ТакжеЧто такое цифры ?, Заблуждения, Повествование |
Что такое конгруэнтные числа? — Определение и примеры — Видео и стенограмма урока
Примеры конгруэнтности
Конгруэнтность — это то, что имеют две цифры, если они совпадают.Эти формы явно демонстрируют соответствие, потому что они абсолютно одинаковы:
А как насчет этих форм?
Один треугольник указывает вверх, а другой — вниз. Однако, если бы вы измерили их, вы бы обнаружили, что соответствующие стороны обоих треугольников абсолютно одинаковы. Фактически, второй треугольник такой же, как и первый; его только что повернули.Итак, эти формы совпадают.
Важно помнить, что направления фигур не влияют на их конгруэнтность. Пока они одинаковой формы и имеют одинаковые размеры, они конгруэнтны.
Давайте теперь посмотрим на квадраты:
Это оба квадрата, но один намного меньше другого. Хотя они одинаковой формы, эти две фигуры не одинакового размера. Следовательно, эти квадраты неконгруэнтны или не конгруэнтны.
Последний пример:
Хотя эти фигуры не совсем те формы, которые мы привыкли видеть, они состоят из тех же линий и кривых, и они одного размера. Единственная разница в том, что одно является отражением другого, но они по-прежнему конгруэнтны, поскольку имеют точно такие же формы и размеры.
Резюме урока
Любые фигуры (даже если их больше двух) одинаковой формы и размера равны конгруэнтным .Неважно, смотрят ли они в разные стороны или одно является отражением другого. Пока форма и размер точно такие же, фигуры совпадают.
Словарь и определения конгруэнтных цифр
Словарь | Определения |
---|---|
Конгруэнтное | фигур, даже если они отражены или повернуты, одинаковой формы и размера |
Неконгруэнтный | фигурок, различающихся по размеру и форме |
Соответствие | что имеют две цифры, если они совпадают |
Результаты обучения
По завершении этого урока учащиеся готовы:
- Описывать совпадающие цифры
- Уметь определять соответствие
- Определить, когда формы несовместимы