Белые и красные мышцы: Три типа мышечных волокон — характеристики и отличия. Как определить свой?

Содержание

Три типа мышечных волокон — характеристики и отличия. Как определить свой?

В теле любого человека присутствуют три типа мышечных волокон — медленные волокна красного цвета и быстрые волокна белого цвета (они, в свою очередь, подразделяются на два типа). Ключевой характеристикой каждого из них является поддерживаемый тип нагрузки — и предпочитаемый источник энергии.

Красные мышечные волокна (использующие в качестве энергии триглицериды) преимущественно встречаются в мускулатуре корпуса, а белые (работающие на гликогене) — в мускулатуре конечностей. Чем отличаются эти типы мышечных волокон и как определить свой тип?

// Типы мышечных волокон

Мышечные волокна — это уникальный тип физиологической структуры, обладающей одновременно как прочностью, так и эластичностью. Они делятся на два вида — быстрые и медленные. Несмотря на то, что обычно волокна переплетены, у профессиональных атлетов один из типов доминирует.

Например, у бегунов-марафонцев и у пловцов наблюдается преимущественно медленный тип мышечных волокон, работающий на свободных жирных кислотах — тогда как у спринтеров и тяжелоатлетов превалирует быстрый тип, требующий гликогена.

По сути, соотношение типов волокон влияет на то, легко ли организм будет выдерживать определенные виды нагрузок — как взрывных силовых, так и монотонных анаэробных. Причем, в результате многолетнего выполнения определенных упражнений структура волокон способна меняться.

// Читать дальше:

Генетика и типы телосложения

В конечном итоге, соотношение типов мышечных волокон у конкретного человека определяется как его телосложением, так и регулярно практикуемой физической нагрузкой. У бегунов хорошо развиты красные мышечные волокна, тогда как у прыгунов и спринтеров — белые.

Эктоморфы, худые от природы, обычно не имеют проблем с лишним весом — но им сложно набрать мышцы. Эндоморфы и мезоморфы отличаются хорошими силовыми показателями, однако эндоморф склонен к набору лишнего веса. Кроме этого, мышечные волокна разных типов иначе утилизирую молочную кислоту.

// Читать дальше:

Быстрые и медленные мышечные волокна

Наиболее простым примером отличия типов мышечных волокон является мясо курицы или другой птицы. Грудка и крылья обладают белым цветом и минимальным количеством жира, тогда как окорочка и бедрышки отличаются темно-красным цветом мяса и более высоким содержанием жировой ткани.

Так как курица чаще всего стоит, мускулатура ее ног испытывает постоянную статическую нагрузку — основную работу выполняют медленные мышечные волокна. В противоположность этому, мышцы крыльев используются исключительно для непродолжительных, но энергичных взмахов — нагрузка идет на быстрый тип волокон.

Медленные (красные) волокна

Хотя сами по себе медленные волокна достаточно тонки и слабы, они могут поддерживать физическую нагрузку продолжительное время. Их красный цвет обусловлен наличием молекул кислорода, необходимого для окисления жиров (триглицеридов), служащих для медленных волокон главным источником энергии.

Именно поэтому аэробный тренинг и продолжительное кардио идеальны для похудения — по сути, такие нагрузки вовлекает в работу медленные мышечные волокна и заставляют тело сжигать жировые запасы. Однако главную роль играет суммарная продолжительность нагрузки.

// Читать дальше:

Быстрые (белые) волокна

Для высокоинтенсивных взрывных нагрузок мышцы требуют быстродоступной энергии. Жир для этих целей не подойдет, поскольку его транспортировка и окисление занимает как минимум несколько минут. Энергия должна находиться в легкодоступной форме как можно ближе к самим мышечным волокнам.

Для взрывных усилий организм использует быстрые мышечные волокна, работающие преимущественно на гликогене (то есть, на запасах углеводов в мышцах), АТФ и креатин фосфате². При этом напомним, что рост мышц и увеличение мускулатуры в результате силовых тренировок во многом обусловлен увеличением энергетических запасов.

// Читать дальше:

Как определить, каких волокон у вас больше?

В реальности мускулатура человека всегда состоит из сплетения мышечных волокон различных типов.

В стабилизирующих мышцах корпуса и позвоночника, внутренних мышцах живота и в мышцах ног обычно преобладают волокна медленного типа, тогда как в прочей скелетной мускулатуре — волокна быстрого типа³.

Однако под воздействием регулярных физических тренировок тело атлета способно адаптироваться. Исследования говорят о том, что у бегунов на марафонские дистанции более 80% всех мышечных волокон являются медленными — в отличие от спринтеров, у которых превалируют быстрые волокна, составляя порядка 65-70%.

// Читать дальше:

Тренировки для роста мышц и для похудения

Для тренировок быстрых мышечных волокон лучше всего подходят тренировки на гипертрофию — силовые упражнения, выполняемые в границе 6-12 повторений. Чем выше рабочий вес и чем меньше количество повторений (и меньше время нахождения под нагрузкой), тем активнее в работе задействованы именно быстрые мышечные волокна.

В противоположность этому, для сжигания жира и вовлечения в работу медленных мышечных волокон, необходимы как статические нагрузки, так и монотонное кардио, выполняемое не менее 30-45 минут. Плюс, подобные тренировки особенно эффективны при низком уровне глюкозы в крови — это заставит организм ориентироваться на жировые запасы.

***

Мышечные волокна делятся на быстрые и медленные. Силовые тренировки вовлекают в работу быстрые (белые) волокна, требуя углеводов и гликогена, а для вовлечения медленных (красных) волокон и сжигания жира необходимы продолжительные аэробные нагрузки низкой интенсивности, выполняемые не меньше 30-45 минут.

Научные источники:

  1. Muscles – Fast and slow twitch, source
  2. Skeletal striated muscle, source
  3. Speed and power training, source
  4. Fast Twitch, Slow Twitch…. Which One Are You? source

В продолжение темы

Дата последнего обновления материала —  16 октября 2020

Красные и белые мышечные волокна (медленные и быстрые).

Итак, Вы уже знаете, как мышца получает энергию для сокращения. Теперь следует разобраться с типами мышечного волокна.

Для начала, следует уяснить, что существует два типа мышечного волокна – красное и белое, и каждому типу мышечного волокна соответствует свой способ восстановления запасов АТФ, который преобладает над другими способами.

Таким образом, красные мышечные волокна (малого диаметра) восполняют свои запасы АТФ, в основном, путем окисления жирных кислот и углеводов в митохондрияхмышечных клеток. Эти волокна окружены огромным количеством капилляров, а названием своим обязаны белку миоглобину, повышенное содержание которого и придает волокну красный цвет. Так как на доставку кислорода к мышце требуется определенное время, то красные мышечные волокна еще принято называть медленными. Для поддержания работоспособности, им не требуется быстрое восполнение запасов АТФ. Соответственно, их можно назвать низко утомляемыми, что позволяет им довольно долго поддерживать небольшие усилия.

Что же касается белых волокон (большого диаметра), то в них энергия расходуется значительно быстрее, поэтому здесь необходим быстрый способ восполнения АТФ – гликолиз.

Белые волокна также получили название быстрые мышечные волокна. Соответственно белые волокна содержат множество гранул гликогена, из которого образуется глюкоза. Гликолиз, протекает без участия кислорода, что ускоряет воспроизводство энергии в мышце, однако конечным продуктом гликолиза является молочная кислота, которая служит причиной быстрой утомляемости белого мышечного волокна.

В мускулатуре человека встречается и смешанный тип волокон, в которых запасы АТФ пополняются окислительно-гликолитическим путем.

Непосредственное влияние на тип волокна оказывает мотонейрон, управляющий им. В подчинении каждого мотонейрона находится только один тип мышечного волокна.

Далее, в статье Контроль над сокращением мышц, Вы узнаете, каким образом мы способны контролировать скорость и силу сокращения собственных мышц. Данная информация просто необходима для полного понимания процесса преодоления нагрузки мышцей.

© Твой Тренинг

Материалы данной статьи охраняются законом о защите авторских прав. Копирование без указания ссылки на первоисточник и уведомления автора ЗАПРЕЩЕНО!

КЛАССИФИКАЦИЯ МЫШЕЧНЫХ ВОЛОКОН!

Всем известно, что каждый человек имеет индивидуальную мышечную композицию, то есть только ему присущее сочетание мышечных клеток (волокон) разных типов во всех скелетных мышцах. Вот только классификаций этих типов волокон несколько и они не всегда совпадают. Какие же классификации сейчас приняты?
Мышечные волокна делятся:

1. На белые и красные

2. На быстрые и медленные

3. На гликолитические, промежуточные и окислительные

4. На высокопороговые и низкопороговые

Разберем все подробно.

   Белые и красные. На поперечном сечении мышечное волокно может иметь различный цвет. Он зависит от количества мышечного пигмента миоглобина в саркоплазме мышечного волокна. Если содержание миоглобина в мышечном волокне большое, то волокно имеет красно-бурый цвет. Если миоглобина мало, то бледно-розовый. У человека почти в каждой мышце содержатся белые и красные волокна, а так же волокна слабо пигментированные. Миоглобин используется для транспортировки кислорода внутри волокна от поверхности к митохондриям, соответственно его количество определяется количеством митохондрий. Увеличивая количество митохондрий в клетке специальными тренировками, мы увеличиваем количество миоглобина и изменяем цвет волокна.

   Быстрые и медленные. Классифицируются по активности фермента АТФ-азы и, соответственно, по скорости сокращения мышц. Активность данного фермента наследуется и тренировке не поддается. Каждое волокно имеет свою неизменную активность этого фермента. Освобождение энергии заключенной в АТФ, осуществляется благодаря АТФ-аза. Энергии одной молекулы АТФ достаточно для одного поворота (гребка) миозиновых мостиков. Мостики расцепляются с актиновым филаментом, возвращаются в исходное положение, сцепляются с новым участком актина и делают гребок.

Скорость одиночного гребка одинакова у всех мышц. Энергия АТФ в основном требуется для разъединения. Для очередного гребка требуется новая молекула АТФ. В волокнах с высокой АТФ-азной активностью расщепление АТФ происходит быстрее, и за единицу времени происходит большее количество гребков мостиками, то есть мышца сокращается быстрее.

   Гликолитические, промежуточные и окислительные. Классифицируются по окислительному потенциалу мышцы, то есть по количеству митохондрий в мышечном волокне. Напомню, что митохондрии – это клеточные органеллы, в которых глюкоза или жир расщепляется до углекислого газа и воды, ресинтезируя АТФ, необходимую для ресинтеза креатинфосфата. Креатинфосфат используется для ресинтеза миофибриллярных молекул АТФ, которые необходимы для мышечного сокращения. Вне митохондрий в мышцах также может происходить расщепление глюкозы до пирувата с ресинтезом АТФ, но при этом образуется молочная кислота, которая закисляет мышцу и вызывает ее утомление.

По этому признаку мышечные волокна подразделяются на 3 группы:
  
1. Окислительные мышечные волокна. В них масса митохондрий так велика, что существенной прибавки ее в ходе тренировочного процесса уже не происходит.

2. Промежуточные мышечные волокна. В них масса митохондрий значительно снижена, и в мышце в процессе работы накапливается молочная кислота, однако достаточно медленно, и утомляются они гораздо медленнее, чем гликолитические.

3. Гликолитические мышечные волокна. В них очень незначительное количество митохондрий. Поэтому в них преобладает анаэробный гликолиз с накоплением молочной кислоты, отчего они и получили свое название. (Анаэробный гликолиз – расщепление глюкозы без кислорода до молочной кислоты и АТФ; аэробный гликолиз, или окисление – расщепление глюкозы в митохондриях с участием кислорода до углекислого газа, воды и АТФ.)

   У не тренирующихся людей обычно быстрые волокна – гликолитические и промежуточные, а медленные – окислительные. Однако при правильных тренировках на увеличение выносливости промежуточные и часть гликолитических волокон можно сделать окислительными, и тогда они, не теряя в силе, перестанут утомляться.
  
   Высокопороговые и низкопороговые. Классифицируются по уровню порога возбудимости двигательных единиц. Мышца сокращается под действием нервного импульса, который имеет электрическую природу. Каждая двигательная единица (ДЕ) включает в себя мотонейрон, аксон и совокупность мышечных волокон. Количество ДЕ у человека остается неизменным на протяжении всей жизни. Двигательные единицы имеют свой порог возбудимости. Если нервный импульс, посылаемый мозгом, имеет величину ниже этого порога, ДЕ пассивна. Если нервный импульс имеет пороговую для этой ДЕ величину или превышает ее, мышечные волокна сокращаются. Низкопороговые ДЕ имеют маленькие мотонейроны, тонкий аксон и сотни иннервируемых медленных мышечных волокон. Высокопороговые ДЕ имеют крупные мотонейроны, толстый аксон и тысячи иннервируемых быстрых мышечных волокон.

Как видите, две из представленных классификаций неизменны на протяжении всей жизни человека вне зависимости от тренировок, а две напрямую зависят именно от тренировок. В отсутствии двигательного режима, например в коме, или долгом нахождении в гипсе даже медленные мышечные волокна теряют свои митохондрии и соответственно миоглобин и становятся белыми и гликолитическими.

   Поэтому в настоящее в спортивной науке считается неправильно говорить: «тренировки направленные на гипертрофию быстрых мышечных волокон», или «гиперплазия миофибрилл в медленных мышечных волокнах», хотя еще 10 лет назад это считалось допустимо даже в специализированных научных изданиях. Сейчас если мы говорим о тренировочном воздействии на МВ, то используем только классификацию по окислительному потенциалу мышцы. Классификации совпадают у не тренирующихся и у представителей скоростно-силовых и силовых видов спорта, где цель поднять максимальный вес в единичном повторении. В видах спорта требующих проявления выносливости классификации совпадать не будут.

   Для наглядности приведу несколько утрированный, хотя теоритически вполне возможный пример. Сразу оговорюсь, что все цифры условные, и их не надо воспринимать буквально. Представим атлета, у которого лучший результат в жиме лежа 200 кг (без экипировки), 180 кг он может пожать на 3 раза, 150 кг на 10 раз. Из результатов видно, что окислительный потенциал мышц очень низок. Соотношение волокон, предположим, следующее: 90% быстрые, 10% медленные. По окислительному потенциалу 75% гликолитические, 15% промежуточные и 10% окислительные. Наилучших успехов в увеличении мышечной массы спортсмен добивается, когда работает в жиме по 6 повторений. Вес штанги достаточно большой чтобы рекрутировать 75% гликолитических волокон, а окислительный потенциал их настолько низок, что и 6-и повторений достаточно для необходимого закисления мышцы.

   Но вот по какой-то причине этот атлет решил максимально увеличить свою выносливость и два месяца по 2-3 раза в день ежедневно работал над увеличением митохондрий в гликолитических и промежуточных МВ. Подробно об этой методике вы можете прочитать в 5-м номере «ЖМ», в моей статье «Тренировка выносливости». Плюс к этому атлет еще поддерживал свой силовой потенциал, выполняя по 1-2 повторениям с околомаксимальным весом раз в 7-10 дней. Два месяца достаточно для предельного насыщения мышц митохондриями. Через два месяца спортсмен проводит тестирование. Оно показывает, что сейчас у него 5% гликолитических волокон, 70% промежуточных и 25% окислительных. То есть гликолитические стали промежуточными, кроме 5% самых высокопороговых, а промежуточные стали окислительными. По активности АТФ-азы соотношение естественно не изменилось, так же 90% быстрые и 10% медленные. 200 кг он выжал на 1 раз, миофибриллы от таких тренировок не выросли, а упасть результату он не дал, используя в тренировках ММУ. 180 кг он выжал на 8 раз, а 150 кг на 25 раз. Огромное количество новых митохондрий «съедало» молочную кислоту не давая мышцам закислиться, что значительно увеличило их функциональность.
Теперь нашему атлету для увеличения мышечной массы работа на 6 повторений практически ничего не даст. Она задействует в нужном режиме только 5% оставшихся гликолитических волокон.

   Сейчас ему придется работать минимум по 15 повторений в подходе, чтобы добиться необходимого для роста мышечной массы закисления мышц. И, дополнительно, включить в тренировку стато-динамические упражнения, поскольку только они способствуют гипертрофии окислительных мышечных волокон, которых у него теперь 25%, и игнорировать их уже нецелесообразно.

   Как мы видим, один и тот же человек вынужден использовать абсолютно разные тренировочные программы для гипертрофии своих быстрых мышечных волокон после изменения их окислительного потенциала! Вот поэтому говорить о тренировочном воздействии на типы волокон, используя классификацию по активности АТФ-зы, считается некорректным. Только классификация по окислительным способностям мышц!

Мышцы. Мышечные волокна. Тренировка мышц.

Но вот еще один важный момент. Оказывается, волокна в каждой мышце бывают двух типов – быстрые и медленные.

Медленно сокращающиеся волокна еще называют красными, потому что в них находится много красного мышечного пигмента миоглобина. Эти волокна отличаются хорошей выносливостью.
Быстрые волокна, по сравнению с красными волокнами, обладают небольшим содержанием миоглобина, поэтому их называют белыми волокнами. Они отличаются высокой скоростью сокращений  и позволяют развивать большую силу.

Да вы и сами видели такие волокна у курицы – ножки красные, грудка белая, Воот! Это оно самое и есть, только у человека эти волокна перемешаны и присутствуют оба типа в одной мышце.

Красные (медленные) волокна используют аэробный (с участием кислорода) путь получения энергии, поэтому к ним подходит больше капилляров, для лучшего снабжения их кислородом. Благодаря такому вот способу преобразования энергии, красные волокна  являются низко утомляемыми и способны поддерживать относительно небольшое, но длительное напряжение. В основном, именно они важны для бегунов на длинные дистанции, и в других видах спорта, где требуется выносливость. Значит, и для всех желающих похудеть они имеют так же решающую роль.

Быстрые (белые) волокна, получают энергию для своего сокращения без участия кислорода (анаэробно). Такой способ получения энергии (его еще называют гликолизом), позволяет белым волокнам развивать большую быстроту, силу и мощность. Но за высокую скорость получения энергии белым волокнам приходится платить быстрой утомляемостью, так как гликолиз приводит к образованию молочной кислоты, а ее накопление  вызывает усталость мышц и в итоге останавливает их работу. Ну и, конечно же, без белых волокон ну никак не могут обойтись метатели, штангисты, бегуны на короткие дистанции….. в общем те, кому требуются сила и скорость.

Теперь придется вас немного запутать, просто потому, что по-другому ну никак не получается. Дело в том, что существует еще один, промежуточный тип волокон, который так же относиться к белым волокнам, но использует как и красные, преимущественно аэробный путь получения энергии и совмещает в себе свойства белых и красных волокон. Еще раз напомню, он относится к белым волокнам.

В среднем человек имеет примерно 40% медленных (красных) и 60 % быстрых (белых) волокон. Но это средняя величина по всей скелетной мускулатуре, что-то наподобие средней температуры по больнице.

На самом деле, мышцы выполняют различные функции и поэтому могут значительно отличаться друг от друга составом волокон. Ну, например, мышцы, выполняющие большую статическую работу (камбаловидная, она же икроножная мышца), часто обладают большим количеством медленных волокон, а мышцы, совершающие в основном динамические движения (бицепс), имеют большое количество быстрых волокон.

Интересно то, что соотношение быстрых и медленных волокон у нас неизменно, не зависит от тренированности  и определяется на генетическом уровне. Именно поэтому существует предрасположенность к тем или иным видам спорта. И именно поэтому, кто-то силен с рождения, а кто-то вынослив.

Теперь давайте-ка посмотрим, как же все это работает.

Когда требуется легкое усилие, например, при ходьбе или беге трусцой,  задействуются медленные волокна. Причем ввиду большой выносливости этих волокон такая работа может продолжаться очень долго. Но по мере увеличения нагрузки организму приходится вовлекать в работу все больше и больше таких волокон, причем те, что уже работали, увеличивают силу сокращения. Если еще увеличивать нагрузку, то в работу включатся так же  быстрые окислительные волокна (помните промежуточные?).  При нагрузке достигающей 20%-25% от максимальной, например, во время подъема в гору или финального рывка, уже и силы окислительных волокон становится недостаточно, и вот тут как раз  включатся в работу быстрые — гликолитические волокна. Как уже говорилось, быстрые волокна значительно повышают силу сокращения мышцы, но, так же быстро и   утомляются, и поэтому в работу будет вовлекаться все большее их количество. В итоге, если уровень нагрузки не уменьшится, движение в скором времени придется остановить из-за усталости.

Вот и получается, что при длительной нагрузке в умеренном темпе, работают в основном медленные (красные) волокна и именно благодаря их аэробному способу получения энергии и сжигаются жиры в нашем организме. Вот вам и ответ на вопрос, почему мы худеем на беговой дорожке и практически не худеем при занятиях на тренажерах. Все просто —  используются разные различные мышечные волокна, а значит и разные источники энергии.

Вообще, мышцы — самый экономичный в мире двигатель. Растут и увеличивают свою силу, мышцы исключительно за счет увеличения толщины мышечных волокон, количество же мышечных волокон не увеличивается. Поэтому, самый последний заморыш и Геракл по числу мышечных волокон не имеют друг перед другом никакого преимущества. Кстати, процесс увеличения толщины мышечных волокон называется гипертрофия, а уменьшения — атрофия.

При тренировках, имеющих целью увеличение силы, мышцы прибавляются в объеме значительно больше, чем при тренировках на выносливость, потому что сила зависит от поперечного сечения мышечных волокон, а выносливость — от добавочного количества капилляров, окружающих эти волокна. Соответственно, чем больше капилляров,  тем больше кислорода с кровью будет доставлено к работающим мышам.

Вот, пожалуй, и пришло  время поговорить о крови и кровообращении.

 

 

Читаем про кровообращение >>

Как определиться каким видом спорта заниматься! Или соотношение быстрых и медленных мышечных волокон.

Все мышцы в организме человека состоят из мышечных клеток — миоцитов или мышечных волокон. Выделяют разные типы миоцитов, они отвечают за разные виды нагрузок, есть два типа мышечных волокон, а именно: 

Медленные (красные) мышечные волокна;

Быстрые (белые) мышечные волокна, которые делятся на 2 подтипа, IIа и IIb.

Забегая немного вперед, напишем, то что — медленные мышечные волокна практически неспособны к гипертрофии. Нуждаются в отличных, от свойственных бодибилдерам, нагрузках.  Быстрые мышечные волокна способны к гипертрофии за счет которой «растут объемы» бодибилдеров. Но об этом ниже.

И так, основное отличие медленных мышечных волокон от быстрых — заключается в выдерживаемых нагрузках и времени нахождения под нагрузкой. Так же быстрые мышечные волокна вдвое толще чем медленные (красные) волокна. 


Медленные мышечные волокна

— сокращаются значительно медленнее, и способны выдержать более малые нагрузки, но при этому у них значительно более длинная фаза утомления, а это означает то, что они могут находиться длительное время под нагрузкой, в десятки и сотни раз дольше, чем быстрые волокна.  

Красным волокнам свойственно:

  • Аэробная или динамическая работа (марафоны, велосоревнования, плавание и т.д.)
  • Приобладание в мышцах спины для поддержания позы 
  • Производство тепла 

Быстрые  мышечные волокна 

— могут развивать огромную мощь в кротчайшие сроки и на непродолжительные период время. Существует два подтипа белых волокон:

  • подтип IIa  — являются переходными волокнами от быстрых к медленным, имеют свойства как красных так и белых волокон, но в менее выраженной форме.
  • подтип IIb — быстрые волокна, обладающие взрывной силой и наибыстрейшей скоростью сокращения. Именно эти волокна являются основными для набора мышечной массы в бодибилдинге.

Если более просто — то при аэробной нагрузке (легкая атлетика) в основном работают медленные мышцы, в то время как при любых тягах толчках, рывках и так далее (бодибилдинг, боевые искусства, пауэрлифтинг, и т.д.) где нужна большая сила и быстрота — работают быстрые волокна.  

Теперь о самом интересном:

  1. У каждого человека различное соотношение быстрых и медленных мышечных волокон в каждой мышце, и это заложено генетикой. 
  2. Многие исследования доказывают, то что соотношение быстрых и медленных волокон не поддается изменению (т.к. если уж у Вас преобладает какой то тип волокон — то это не изменить)
  3. Основной рост мышц идет не за счет увеличения количества волокон, а за счет гипертрофии (расширению) самих волокон.
  4. Медленные, красные волокна — практически не способны к гипертрофии (увеличению), а это значит, что посмотрев п.3. можно твердо говорить о том, что набрать мышечную массу за счет медленных волокон — практически не возможно.
  5. Быстрые, белые волокна — изначально вдвое шире медленных и поддаются гипертрофии, а это значит что весь рост мышц происходит из-за увеличения (гипертрофии) быстрых волокон.
  6. У большинства людей быстрые и медленные волокна в организме находятся примерно в одинаковом количестве. НО если у человека преобладает один из типов мышечных волокон, то ему будет даваться рост мышц, занятия бодибилдингом (при преобладании быстрых волокон) значительно проще, в то же время при преобладании медленными волокнами — человеку проще будет приодалевать аэробные нагрузки и легче будет добиться хороших результатов в легкой атлетике. 

Делаем выводы зная соотношение быстрых и медленных типов мышц

Не стоит ходить к гадалке, что бы сделать простой вывод. Зная соотношение мышечных волокон в различных частях тела — можно достаточно просто определиться с видом спорта, которым стоит заниматься. 

Если у вас преобладают быстрые волокна — вам имеет смысл пойти в бодибилдинг, где Вас ждут хорошие результаты. И чем больше у Вас преобладание этих волокон — тем проще будет даваться Вам этот вид спорта и больших результатов Вы сможете достичь. 

Если у вас преобладают медленные мышечные волокна — вперед, в легкую атлетику, бегать марафоны или крутить педали. При значительном перевесе красных волокон в организме — Вас обязательно ждут победы в легкой атлетике.  

Если же вы относитесь к большинству людей, у которых и тех и других мышечных волокон примерно поровну. Не огорчайтесь, вы сможете заняться любым видом спорта, но звездой вы вряд ли станете. Хотя упорство и труд — делают свое дело. 

Как же определить соотношение быстрых и медленных мышечных волокон

Существует не сложный тест, пройдя который вы почти со стопроцентной вероятностью узнаете соотношение мышечных волокон в нужной Вам мышце. Тест этот разработан докторами F. Hatfield и Charles Poliquin. 

Начнем:

  1. Для начала для каждой проверяемой мышцы — нужно узнать, какой максимальный вес вы можете поднять. Т.е. если Вы хотите определить соотношение быстрых и медленных волокон в грудных мышцах — для начала нужно узнать какой Вес вы способны пожать на один раз. Если вы хотите узнать соотношение мышечных волокон в мышцах ног — нужно узнать максимальный вес в жиме ногами. и т.д. Обычно для проверки используются 3 упражнения на разные части тела, например жим лежа, жим ногами, и подъем штанги на бицепс.
  2. Для того, что бы узнать максимальный вес который вы можете пожать или поднять — хорошенько разомнитесь, обязательно найдите человека который Вас подстрахует. Возьмите вес с которым вы может сделать 2-3 повторения. После этого прибавьте вес, и сделайте еще один подход, если сумели сделать хотя бы одно повторение, прибавьте еще вес. И так делайте до того момента, пока в очередном подходе вы не сможете сделать ни одного повторения. Таким образом предыдущий подход с одним повторением — и будет являться у Вас максимум. ВНИМАНИЕ между каждым подходом делайте паузу не менее 3х минут!
  3. Теперь отдохните 15 минут, после чего возьмите вес равный 80% от Вашего максимума. Выполните максимальное число повторений в подходе, пока ваш страховщик не поможет Вам в последнем повторении. — Запишите число повторений которое Вам далось.
Теперь можно перейти к другой группе мышц. Отдохните 5-10 минут и выполните все те же действия для следующей группы мышц.

Результаты теста на выявление соотношения красных и белых мышечных волокон

После того, как все упражнения выполнены, у вас должно быть 3 числа. Количество повторений которое вы осилили с 80% от максимального веса, в жиме лежа, в жиме ногами, и в поднятии штанги на бицепс. 

Теперь смотрите: 

  • если вы сделали 8-10 повторений то соотношение быстрых и медленных волокон примерно поровну;
  • если вы выполнили 5-7 повторений, то у вас преобладают быстрые (белые) мышечные волокна;
  • если вы выполнили 4 или менее повторений — то Вам прямая дорога в бодибилдинг, где Вас несомненно ждет успех и большие достижения;
  • если вы сделали 11-13 повторений то у вас преобладают медленные (красные) мышечные волокна;
  • если вы сделали 14 или более повторений — то вперед за медалями в легкой атлетике.

Типы мышечных волокон

Описаны различные типы мышечных волокон, а также гистологические и гистохимические методы их классификации. Дана характеристика различных типов мышечных волокон, описаны их функции, а также расположение в скелетной мышце.

Типы мышечных волокон

Классификации мышечных волокон

В настоящее время общепринято считать, что у человека скелетные мышцы состоят из волокон различных типов. Существуют различные классификации типов мышечных волокон. Различают волокна: красные и белые, медленные и быстрые, тонические и фазические. В середине ХХ века для разделения мышечных волокон на разные типы использовались гистологические методы (А.В. Самсонова с соавт., 2012). Из скелетных мышц посредством биопсии извлекался кусочек мышечной ткани, быстро замораживался и разрезался на тонкие слои. Затем производилось исследование мышечной ткани под микроскопом. Первоначально критерием разделения мышечных волокон на медленные и быстрые являлось количество и расположение митохондрий. Затем предпочтение стали отдавать такому показателю как толщина Z-дисков. Было найдено, что у медленных волокон Z-диски существенно толще, чем у быстрых. В качестве еще одного критерия разделения мышечных волокон на типы использовалась толщина М-диска. При продольных срезах расслабленной скелетной мышцы видно, что медленные мышечные волокна содержат пять М-линий, имеющих одинаковую плотность. Промежуточные мышечные волокна – три линии средней плотности, ясно видимые и две линии, имеющие небольшую плотность. В быстрых мышечных волокнах имеются три линии средней плотности и две внешние, едва различимые.

В настоящее время чаще всего используется классификация M.Brook, K.Kaiser (1970), которая основывается на гистохимических методах.


Более подробно строение и функции мышц описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц«


Известно, что миофибриллы состоят из саркомеров, а те, в свою очередь – из толстых и тонких филаментов. Основу толстых филаментов составляет белок миозин, а основу тонких – белок актин.

Гистохимические методы основаны на определении активности фермента АТФ-азы миозина. Этот фермент расположен на головках молекул миозина. Фермент АТФ-аза осуществляет высвобождение энергии, необходимой для осуществления сокращения мышечного волокна. Степень активности АТФ-азы варьирует в широких пределах. Установлено, что степень активности АТФ-азы миозина связана с типом миозина, содержащемся в мышечном волокне. В медленных мышечных волокнах активность АТФ-азы низкая, а в быстрых – высокая. Именно высокая активность АТФ-азы миозина способствует высокой скорости сокращения мышечных волокон.

На основе классификации по активности АТФ-азы миозина различают мышечные волокна типа I, типа IIA и типа IIB.

Характеристики мышечных волокон

Медленные и быстрые мышечные волокна различаются метаболизмом, что проявляется в активности ферментов и количестве митохондрий. Медленные мышечные волокна окружены большим числом крупных митохондрий с набором ферментов, катализирующих распад углеводов и жирных кислот. Поскольку этот процесс требует притока большого количества кислорода, вполне естественно, что сеть капилляров, окружающая медленные мышечные волокна более развита и снабжение кислородом, доставленным с током крови, в этих волокнах происходит более интенсивно. В этих волокнах крайне ограничен запас углеводов в виде гликогена и низка активность ферментов гликолиза (М.И. Калинский, В.А. Рогозкин, 1989).

Быстрые волокна типа IIA и IIB характеризуются высокой активностью АТФ-азы миозина, поэтому скорость их сокращения практически в два раза выше,  чем у медленных.  С высокой скоростью сокращения связан хорошо развитый саркоплазматический ретикулум, который характерен для быстрых мышечных волокон, так как он содержит ионы кальция, необходимые для сокращения мышечного волокна.

Волокна типа IIA имеют набор ферментов для полного окисления углеводов и жирных кислот, такой же, как и в медленных волокнах и к тому же они располагают ферментами гликолиза, то есть способностью расщеплять углеводы до молочной кислоты. Быстрые мышечные волокна типа IIB способны к коротким периодам сократительной активности. Они имеют набор ферментов гликолиза с высокой активностью и небольшое количество митохондрий с окислительными ферментами. Быстрые мышечные волокна типа IIA и IIB имеют большие запасы гликогена, который сразу используется в качестве источника энергии при сокращении скелетной мышцы (табл. 1).

Таблица 1 Характеристики мышечных волокон различных типов

ХарактеристикаI типIIА типIIВ тип
Название мышечных волоконКрасные, медленные, устойчивые к утомлению, окислительныеПромежуточные, быстрые, устойчивые к утомлению, окислительно-гликолитическиеБелые, быстрые, быстроутомляемые, гликолитические, анаэробные
Размер мотонейронамалыйБольшойБольшой
Активность АТФ-азы миозинанизкаяВысокаяВысокая
Саркоплазматический ретикулумСлабо развитСреднее развитиеХорошо развит
Плотность капилляровВысокаяВысокаяНизкая
Количество миоглобинаМногоСреднеМало
Количество митохондрийМногоСреднеМало
Размеры митохондрийОчень большиеСредниеНебольшие
Активность ферментов митохондрийБольшаяБольшаяНизкая
Сопротивление утомлениюВысокоеСреднееОчень низкое
Запасы гликогенаНизкиеБольшиеБольшие
Гликолитическая способностьНизкаяБольшаяБольшая
Скорость сокращенияНизкаяВысокаяВысокая
Площадь поперечного сечения мышечного волокнаНебольшаяБольшаяБольшая
Максимальная силаНебольшаяБольшаяОчень большая

 

Функции мышечных волокон

Основная функция волокон типа I – выполнение длительной работы низкой интенсивности. Они активны также при поддержании позы. Поэтому антигравитационные мышцы в основном состоят из медленных волокон типа I.

Основная функция мышечных волокон типа II – выполнение быстрых и сильных сокращений.

Расположение мышечных волокон различных типов в скелетных мышцах

Мышечные волокна объединены в пучки. Их покрывает перимизий. Пучок содержит мышечные волокна различных типов. В пучке мышечные волокна расположены в виде мозаики. Однако доказано, что внутри мышцы больше мышечных волокон типа I, а снаружи – мышечных волокон типа II.

Литература

  1. Калинский М.И., Рогозкин В.А. Биохимия мышечной деятельности.- Киев: Здоровья, 1989.- 144 с.
  2. Самсонова, А.В. Методы оценки композиции мышечных волокон в скелетных мышцах человека /А.В. Самсонова, И. Э. Барникова, М. А. Борисевич, А. В. Вахнин //Труды кафедры биомеханики НГУ им. П.Ф. Лесгафта. – Вып. 6.- СПб, 2012.- С. 18-27.
  3. Сонькин В.Д., Тамбовцева Р.В. Развитие мышечной энергетики и работоспособности в онтогенезе.
  4. Уилмор Дж. Х., Костилл Д. Л. Физиология спорта и двигательной активности. Киев: Олимпийская литература, 1997. 504 с.

 

С уважением, А.В.Самсонова

2.Красные и белые мышечные волокна

В зависимости от сократительных свойств, гистохимической окраски и утомляемости мышечные волокна подразделяют на две группы — красные и белые.

Красные мышечные волокна – это медленные волокна небольшого диаметра, которые используют для получения энергии окисление углеводов и жирных кислот (аэробная система энергообразования). Другие названия этих волокон: медленные или медленно-сокращающиеся мышечные волокна, волокна 1 типа, а также SТ-волокна (slow twitch fibres).

Медленные волокна называют красными из-за красной гистохимической окраски, обусловленной содержанием в этих волокнах большого количество миоглобина — пигментного белка красного цвета, который занимается тем, что доставляет кислород от капилляров крови вглубь мышечного волокна.

Красные волокна имеют большое количество митохондрий, в которых происходит процесс окисления, для получения энергии ST-волокна окружены обширной сетью капилляров, необходимых для доставки большого количества кислорода с кровью.

Медленные мышечные волокна приспособлены к использованию аэробной системы энергообразования: сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Такие волокна отлично подходят для продолжительной и не интенсивной работы (стайерские дистанции в плавании, легкий бег и ходьба, занятия с легкими весами в умеренном темпе, аэробика), движений, не требующих значительных усилий, поддержании позы. Красные мышечные волокна включаются в работу при нагрузках в пределах 20-25% от максимальной силы и отличаются превосходной выносливостью.

Красные волокна не подойдут для подъема тяжелого веса, спринтерских дистанций в плавании, так как эти виды нагрузок требуют достаточно быстрого получения и расхода энергии.

Белые мышечные волокна — это быстрые волокна большего по сравнению с красными волокнами диаметра, которые используют для получения энергии в основном гликолиз (анаэробная система энергообразования). Другие названия этих волокон: быстрые, быстросокращающиеся мышечные волокна, волокна 2 типа, а также FТ-волокна (fast twitch fibres).

В быстрых волокнах меньше миоглобина, поэтому они выглядят белее.

Для белых мышечных волокон характерна высокая активность фермента АТФазы, следовательно АТФ быстро расщепляется с получением большого количества необходимой для интенсивной работы энергии. Так как FТ-волокна обладают высокой скоростью расхода энергии, они требуют и высокой скорости восстановления молекул АТФ, которую может обеспечить только процесс гликолиза, потому что в отличие от процесса окисления (аэробное энергообразование) он протекает непосредственно в саркоплазме мышечных волокон, и не требует доставки кислорода митохондриям, и доставки энергии от них уже к миофибриллам. Гликолиз ведет к образованию быстро накапливающейся молочной кислоты (лактата), поэтому белые волокна быстро устают, что в конечном итоге останавливает работу мышцы. При аэробном энергообразовании в красных волокнах молочная кислота не образуется, поэтому они способны долго поддерживать умеренное напряжение.

Белые волокна имеют больший диаметр по сравнению с красными, в них также содержится гораздо большее количество миофибрилл и гликогена, но меньше количество митохондрий. В белых волокнах находится и креатинфосфат (КФ), необходимый на начальном этапе высокоинтенсивной работы.

Белые волокна больше всего подходят для совершения быстрых, мощных, но кратковременных (так как они обладают низкой выносливостью) усилий. По сравнению с медленными волокнами, FT-волокна могут в два раза быстрее сокращаться и развивать в 10 раз большую силу. Максимальную силу и скорость человеку позволяют развить именно белые волокна. Работа от 25-30% и выше означает, что в мышцах работают именно FТ-волокна.

3. Аэробная и анаэробная работа.

Аэробные тренировки.

Аэробные тренировки, аэробика, кардиотренировки — это вид физической нагрузки, при которой мышечные движения совершаются за счет энергии полученной в ходе аэробного гликолиза, то есть окисления глюкозы кислородом. Типичные аэробные тренировки — бег, ходьба, велосипед, активные игры и пр. Аэробные тренировки отличаются длительной продолжительностью (постоянная мышечная работа продолжается более 5 минут), при этом упражнения имеют динамический повторяющийся характер.

Аэробные тренировки предназначены для повышения выносливости организма, подъема тонуса, укрепления сердечно-сосудистой системы и сжигания жира. Также в исследованиях было показано, что аэробные нагрузки вызывают гипертрофию мышц.

Исследование Michele Tine в 2014 году показало, что однократное занятие аэробики на протяжении 12 минут вызывает существенное улучшение зрительного восприятия и внимания у студентов сразу после физической нагрузки и спустя 45 минут, что в свою очередь способствует повышению их академической успеваемости.

Однако следует помнить, что планомерных научных исследований не проводилось. Данный вывод скорее сделан на умозаключении, что при аэробных нагрузках незначительно увеличивается энергетическое потребление. При этом игнорируется тот факт, что большую часть дневного потребления составляет базовый метаболизм, который замедляется после прекращения аэробных нагрузок. Это связано с тем, что организму требуется ресурсы, чтобы восстановить потерянное. Причем, чем больше будет потрачено энергии запасенной жировыми клетками, тем сильнее организм постарается возместить потери, запасая впрок и замедляя метаболизм. Для того, чтобы негативные последствия от аэробных упражнений были минимальными, придется ограничивать дневную калорийность, а при уменьшении дневной калорийности сверх меры, организм начинает увеличивать количество жировых клеток. Таким образом аэробные упражнения нужно применять взвешенно и обдуманно, учитывая негативные последствия от их применения.

Американские исследователи из Университета Калифорнии оценили количество энергии, затрачиваемой мужчинами и женщинами, которые оставались в форме и вели активный образ жизни в 60 или 70 лет. Оказалось, что пожилые люди, которые регулярно бегали, тратили столько же энергии при ходьбе, как и 20-летние подростки. Обычные прогулки не имели такого эффекта. Такие люди тратили на 20% больше энергии при ходьбе.

Секрет настоящего атлетизма

Что мы на самом деле имеем в виду, когда говорим о «атлетизме»?

Ваш внешний вид будет фактически зависеть от конкретных мышц, которые укрепляются. Таким образом, каждый спортсмен развивает телосложение, типичное для данного вида спорта. Поэтому может показаться странным, что бегуны на длинные дистанции, например, имеют довольно жилистое телосложение, но спринтеры очень мускулистые, хотя движения и, следовательно, группы мышц, которые они тренируют, очень похожи.Таким образом, секрет заключается не в самом движении, а в самой интенсивности и продолжительности. Здесь в игру вступают различные типы мышечных волокон.

Идеальные типы — медленные и быстро сокращающиеся волокна

Вам уже известна классификация гладких, поперечно-полосатых и сердечных мышц, а также структура скелетных мышц. Внутри каждой мышцы мы находим мышечные клетки: различают быстро и медленно сокращающиеся мышечные волокна, а также различные промежуточные и смешанные типы.

В этой статье мы кратко познакомим вас с основами этих типов мышц, какими преимуществами и недостатками они обладают, и почему это важно для свободных спортсменов.

Slow Twitch — без остановки

Медленно сокращающиеся волокна также известны как красные волокна, поскольку они содержат большое количество кислорода. Для хранения кислорода в мышечных клетках необходим переносчик кислорода миоглобин. Поскольку этот белок имеет красный цвет, мышечные волокна также выглядят красноватыми. В основном они получают энергию из гликогена и жира с помощью кислорода: когда используется кислород, мы говорим об аэробной выработке энергии.Однако, поскольку этот тип энергоснабжения представляет собой длительный и сложный процесс, эти типы волокон не могут быстро сокращаться и, следовательно, менее интегрированы в быстрые и мощные движения. Преимущество состоит в том, что этот тип волокна обладает высокой устойчивостью к усталости. Поскольку утомляемость является одной из предпосылок роста мышц, гипертрофия этих типов волокон оценивается лишь частично. Красные мышечные волокна используются почти постоянно. Без них мы не смогли бы выполнять даже самые простые естественные движения, такие как сидение, стояние или ходьба.

Именно поэтому — для вашего повседневного здоровья — ими не следует пренебрегать и их следует тренировать с помощью упражнений на выносливость, таких как более длинные бега. В противном случае вы рискуете нарушить осанку и нарушить равновесие, что может привести к различным жалобам, например, к боли в спине.

Быстро сокращающиеся волокна — создатели мышц

Быстро сокращающиеся волокна имеют более низкий уровень миоглобина и, следовательно, более низкое содержание кислорода, поэтому они не кажутся красноватыми, а скорее яркими. Так что они также известны как белые мышечные волокна.В отличие от красных волокон, они получают энергию анаэробно, то есть без кислорода и в основном за счет сахарного гликогена. Гликоген может дать энергию очень быстро и в краткосрочной перспективе, поэтому белые волокна могут сокращаться быстрее и сильнее. Как бы быстро ни поступала энергия, она, к сожалению, истощена. Белые мышечные волокна утомляются первыми, поэтому организм активирует их в последнюю очередь.

Хорошие новости: белые мышечные волокна толще и имеют больший потенциал для роста.Хотя тренировка быстрых мощных движений не изменяет количество белых мышечных волокон, она меняет их размер и, следовательно, их массовую долю в мышцах, позволяя мышцам расти.

Промежуточные волокна — универсальные

Существует также третий тип волокон: промежуточные мышечные волокна. В зависимости от того, на какой аспект вы смотрите (подача энергии, цвет, потенциал мощности и скорость сокращения), также существуют различные подтипы. Они очень легко адаптируются — как в краткосрочной, так и в долгосрочной перспективе.

Мы находим все виды волокон в каждой мышце. В зависимости от того, как и как часто мышца подвергается нагрузке, ее внутренний состав отличается от других. Хотя считается, что распределение различных типов волокон определяется генетически, исследования неоднократно наблюдали, что можно изменить это распределение с помощью специальной тренировки. Здесь особенно интересны промежуточные типы волокон. На них можно влиять и манипулировать, чтобы они хорошо работали в любом направлении.Также наблюдается преобразование белых мышечных волокон в красные.

Это причина того, почему бегуны на выносливость и спринтеры выглядят так по-разному, хотя движения, которые они выполняют, схожи. Мышечные волокна — это секрет, почему спортсмены могут выглядеть по-разному — в зависимости от того, чем они занимаются. Спринтерам необходимо выполнять быстрые и мощные движения, поэтому активизируются многие белые мышечные волокна, а бегуны на выносливость тренируют те виды мышц, которые обладают высоким уровнем выносливости.

Но что мы подразумеваем под атлетизмом?

Спортсмен развивает всесторонние спортивные способности. Скорость, подвижность, сила и выносливость. Freeletics Bodyweight, Running и Gym идеально дополняют друг друга, обеспечивая спортивное тело.

Freeletics Масса тела требует в основном белых и промежуточных мышечных волокон, поскольку необходимо высвобождать силу с высокой скоростью в течение определенного периода. Например, чтобы оторваться от земли при выполнении бёрпи. Бег на средние и длинные дистанции, которые будут частью вашей тренировки с Freeletics Running, например, тонизирует красные мышечные волокна и оптимизирует снабжение энергией всего тела.Сочетая выносливость и быстрые энергичные движения, вы можете развить важные навыки: ваши мышцы в целом становятся более гибкими, более универсальными, более адаптируемыми.

Вот что мы подразумеваем под атлетизмом. Спортсмен может освоить и то, и другое; дистанции и нагрузки в течение среднего или длительного периода времени, а также очень быстрое раскрытие его потенциала. Эти две возможности и связанные с ними методы обучения идеально дополняют друг друга. Мышца, которые одновременно являются сильными и прочными, являются синонимом повышенных спортивных способностей.

Это также видно по вашему внешнему виду: сочетание тренировки с собственным весом, бега и тренажерного зала бросает вызов вашим мышцам по-разному и строит их так, как задумано природой. У спортсмена нет неестественно объемных мышц, при этом он не худой или изможденный. Для спортивного образа характерны натуральные, подтянутые, эстетичные мышцы. Поза прямая, походка уверенная и осознанная. Поэтому не бойтесь бегать, даже если вы хотите накачать мышцы. Теперь вы знаете: они нужны вам и для набора мышц!

Разница между красной и белой мышцами

Красные и белые мышцы — это скелетные мышцы нашего тела, которые выполняют в нем некоторые важные функции.В Веданту мы составили краткое изложение разницы между красной и белой мышцами для облегчения понимания учащимися. Давайте сначала разберемся, что это за мышцы.

В человеческом теле почти 600 мышц, которые подразделяются на три категории; скелетные мышцы, сердечные мышцы и гладкие мышцы. Костно-мышечная система тела состоит из двух основных компонентов: мускулов (мускулов) и скелетной структуры, на которой эти мышцы прикреплены. Эти скелетные мышцы можно разделить на красные и белые мышцы.

Красные мышцы

Красные мышцы имеют красный цвет из-за наличия плотных капилляров, богатых миоглобином и митохондриями. Одно из основных различий между красными и белыми мышечными волокнами — это цвет, который является темно-красным для красных мышц из-за миоглобина, который присутствует в саркоплазме (цитоплазме) мышечного волокна. Миоглобин, присутствующий в красных мышцах, связывает кислород и хранит его в виде оксимиоглобина в красных волокнах. Во время сокращения мышц оксимиоглобин высвобождает необходимый кислород.Хорошим примером красных мышц является мышца-разгибатель.

Белые мышцы

Белые мышцы имеют меньшее количество миоглобина и митохондрий и поэтому выглядят беловатыми. Примером белой мышцы является мышца глазного яблока.

Давайте подробно рассмотрим разницу между красными и белыми мышцами ниже

Критерии

Красные мышцы

Белые мышцы

Наличие митохондрий

В теле их больше

Меньше, чем в красных мышцах

Внешний вид

Красные мышцы тоньше

Белые мышцы толще красных мышц

Капиллярное русло

Капиллярное русло более плотное

Оно менее плотное

Скорость сокращения

Скорость сокращения красных мышц ниже, чем у белых мышц

Скорость сокращения выше, чем у красных мускулов. es

Саркоплазматический ретикулум (SR)

У них меньше SR, чем у белых мышц

У них больше SR, чем у красных мышц

Уровень утомляемости

Красный мышцы могут выполнять аэробное окисление без накопления большого количества молочной кислоты.Это помогает красным мышцам сокращаться в течение длительного периода.

Белые мышцы выполняют анаэробное окисление и в процессе накапливают больше молочной кислоты, чем красные мышцы. Это приводит к утомлению мышц после короткого периода сокращения.

Использование кислорода

Красные мышцы потребляют больше кислорода, чем белые, и это одна из причин, почему они используются при интенсивных действиях, таких как упражнения.

Белые мышцы используют меньшее количество кислорода, чем красные.

Выработка энергии

Для выработки энергии они полагаются только на кислород, поэтому их еще называют медленными окислительными мышцами.

Они богаты гликогеном и ферментами гликолиза, что дает им необходимую энергию.

Twitch-волокна

У них есть медленные волокна, которые сокращаются медленно в течение длительного времени без усталости.

У них есть быстро сокращающиеся волокна, которые сокращаются быстрее на короткий период и быстро устают.

красных мышц против белых мышц — видео и стенограмма урока

Красные мышцы

Красные мышцы — это скелетные мышцы, богатые капиллярами, миоглобином и митохондриями.Капилляры — это очень маленькие кровеносные сосуды, которые доставляют насыщенную кислородом кровь к мышцам. Этот кислород поглощается белком под названием миоглобин . Затем миоглобин помогает снабжать кислородом митохондрии , своего рода энергетическую установку клетки. Они используют кислород, помимо прочего, для производства большого количества энергии.

Основная причина, по которой такие мышцы называются красными мышцами, заключается в том, что они содержат много того миоглобина, который придает красный цвет. Конечно, богатая капиллярная среда (подумайте: много красной крови) добавляет цвет, и митохондрии также помогают придать более темный цвет этим мышцам.

В общем, красные мышцы хорошо оснащены, чтобы производить много энергии! И это тоже хорошо, потому что у них много медленно сокращающихся волокон , которые заставляют красные мышцы сокращаться медленно, но в течение длительного периода времени, не утомляясь (подумайте: мышцы спины). Эти типы мышц почти всегда активны. Вы можете сидеть или ходить, и они всегда должны быть активными, иначе вы бы упали, не так ли?

Кроме того, поскольку эти мышцы используют много кислорода, именно они используются во время аэробных упражнений, а именно те, которым требуется много кислорода, например, при беге.Поскольку эти мышцы полагаются на кислород для выработки энергии, их также называют медленными окислительными мышцами.

Белые мышцы

Белые мышцы имеют меньше капилляров, миоглобина и митохондрий. Белые мышцы содержат быстро сокращающихся волокон , что позволяет им сокращаться очень быстро и с большой силой, но они не могут выдерживать сокращение очень долго, прежде чем утомятся.

Поскольку у белых мышц не так много механизмов для получения и использования кислорода для выработки энергии, они полагаются на анаэробное (бескислородное) производство энергии.В результате быстро сокращающиеся волокна иногда называют анаэробными волокнами. Энергия, генерируемая анаэробными механизмами, зависит от сахара. В результате такие мышцы иногда также называют быстро-гликолитическими мышцами, названными в честь гликолиза, процесса, при котором глюкоза (сахар) превращается в энергию.

Краткое содержание урока

Красные мышцы — это скелетные мышцы, богатые следующими веществами:

  • Капилляры , доставляющие много кислорода к мышцам
  • Миоглобин , который забирает кислород и доставляет его в митохондрии
  • Митохондрии , электростанции, вырабатывающие энергию для клетки

Красные мышцы имеют медленно сокращающихся волокон , которые могут медленно сокращаться в течение длительного периода времени без усталости.Они используются во время аэробных упражнений и, как таковые, требуют большого количества кислорода для выработки энергии.

Белые мышцы имеют меньше капилляров, миоглобина и митохондрий. У них есть быстро сокращающихся волокон , которые могут сокращаться очень быстро, с большой силой, но ненадолго. Они используются в краткосрочных упражнениях и полагаются на сахарный путь для выработки энергии.

ch7_2

ch7_2

Базовая концепция — дифференциация клеток

Формирование мышечных волокон из мезодермального клетки через ряд переходных типов клеток ( премиобластов, миобласты и миотрубка или вторичное волокно ) является классическим примером клеточной дифференциации. Клеточная дифференциация приводит к эффективному и взаимовыгодное разделение труда между тканями и органами тела.

В скелетных мышцах дифференциация продолжается после волокон сформировались и достигли функционального состояния.

Физиологическая дифференциация следует за клеточной дифференциацией, и создает популяции быстрых и медленных волокон с соответствующими источниками энергия на сокращение,

либо аэробный (с использованием переносимого с кровью кислорода для полного окисления субстраты)

или анаэробный (неполное окисление углеводов без надобности для кислорода).

Красно-белые мышцы

Некоторые мышцы туши особенно темные или красные. Этот цвет разница вызвана красным пигментом, миоглобином , в саркоплазме (цитоплазма) мышечных волокон.

Гемоглобин , пигмент красных кровяных телец, приносит кислород к капиллярам на поверхности мышечных волокон.

Отсюда перенос кислорода внутрь волокна облегчается миоглобином.Таким образом, волокна, специализирующиеся на аэробном метаболизме, развивают высокая концентрация миоглобина.

Основная работа некоторых мышц заключается в поддержании позы стоя. или медленно сокращаться во время движения, жевания или дыхания. Такие мышцы как правило, содержат высокую долю медленно сокращающихся и устойчивых к усталости волокна с высокой концентрацией миоглобина. Капиллярное русло красных мышц плотнее, чем в белых мышцах.

Еще в 1873 году великий французский гистолог Ранвье уже обнаружил эти темно-красные мышцы

  • (1) сжимайтесь медленно,
  • (2) развитие столбняка (блокировка полного сокращения) при более низких уровнях стимуляции,
  • (3) относительно больше саркоплазмы,
  • (4) иметь более отчетливые продольные, бороздки,
  • (5) более устойчивы к усталости.
Не путайте продольные бороздки с In поперечные срезы мышечных волокон, различия в размерах миофибрилл, в регулярности миофибриллярного расположения и в степени миофибриллярности разделение может создать две различные модели, названные немецкими гистологами, фельдерструктур в медленных волокнах и фибрилленструктура в быстрых волокна.

Для каждое обобщение, мы можем ожидать лежащую в основе сложность исключений! Подробное объяснение доступно в другом месте.

Быстрые и медленные волокна

На первый взгляд исторически казалось, что отношения Между быстрыми и медленными волокнами у мясных животных было довольно просто. От во времена Ранвье было известно, что быстрые волокна обычно белый, тогда как медленные волокна обычно были красными. Когда было обнаружено покраснение из-за миоглобина, и было обнаружено, что миоглобин коррелирует с аэробными метаболизма, это объясняет взаимосвязь между покраснением и скоростью сокращение.Бледные или белые волокна с низким аэробным потенциалом были было обнаружено, что они хорошо снабжены гликолитическими ферментами, которые позволяют им получать энергия быстро за счет неполного окисления гликогена. Это объясняло, почему белые волокна быстро утомлялись, когда их гликоген запасы истощились и почему пришлось ждать выведения лактата кровеносной системой.

На крайних ступенях физиологической дифференциации (быстрые белые волокна против медленных красных волокон) эти открытия все еще действительный.Проблема, как мы видим сейчас, в том, что есть еще волокна. с высокой скоростью сжатия и двойным источником энергии .

Другими словами, некоторые быстрые волокна обладают как аэробными, так и анаэробными свойствами.

Открытие этих волокон самым запутанным образом совпало с растущее осознание того, что замедление красных волокон у мясных животных и птицы было сильно отличается от лягушек и других жутких животных, которые так часто встречаются используется в биомедицинских исследованиях.Сложно написать исследовательский отчет о типах мышечных волокон, не называя их имен. К сожалению, все похоже, использовали разные имена, и количество типов волокон, которые были признанные, как правило, являются функцией количества гистохимических методов используется для их идентификации. Какой облом.

Короче говоря, мы можем обобщить следующим образом.

  • Красный = бета-R = Тип I, отличающийся гистохимическими признаками. медленной скорости сокращения (например,, кислотостойкая АТФаза, щелочно-лабильная АТФаза) плюс особенности, указывающие на сильный аэробный метаболизм (например, сильный митохондриальный Активность SDH).
  • Промежуточный = альфа-R = красный тип II, отличающийся характерными чертами высокой скорости сокращения (например, кислотолабильная, щелочно-устойчивая АТФаза) плюс особенности, свидетельствующие о сильном аэробном метаболизме.
  • Белый = альфа-W = белый тип II, с отличительными чертами, указывающими на высокая скорость сокращения плюс признаки, указывающие на слабый аэробный метаболизм (например., низкая активность SDH).

Вот пример реакции АТФазы.

Замороженный участок мышцы подвергается воздействию раствора АТФ и АТФазы услужливо. отщепляет фосфат. Но фосфат невидим и пытается двигаться. Сначала мы останавливаем его движение, осаждая фосфат с кобальта, затем делаем соль кобальта черной, чтобы мы могли видеть, где она превращая его в сульфид. Если это все, что мы делаем, все волокна могут становятся черными, потому что у всех есть АТФаза.Итак, прежде всего, прежде чем мы запускаем описанные выше реакции, выставляем замороженные участки мяса в растворы (уксусная кислота, формальдегид и т. д.), которые выбивают изофермент в быстрых или медленных волокнах. Тогда мы сможем увидеть различия между волокна, как указано выше. На самом деле это намного сложнее, но надеюсь, это поможет вам понять это изображение!

Вот пример реакции SDH.

SDH = сукцинатдегидрогеназа, фермент, специфичный для митохондрий.Каждая маленькая гранула диформазана (продукт реакции нитросинего тетразолия) указывает, где находятся митохондрии.

Вот пример реакции фосфорилазы.

Фосфорилаза это первый фермент, участвующий в гликогенолизе. Обычно ломается гликоген, но мы можем заставить его бежать в обратном направлении, чтобы он создавал новые гликоген (амилоза), который мы можем окрашивать йодом. Загвоздка в том, что реакция работает лучше всего, если в мышцах присутствует некоторый естественный гликоген волокно, чтобы начать реакцию.Таким образом, отсутствие фосфорилазной реакции автоматически не означает отсутствие фосфорилазы!

Вот пример красителя на триглицериды — Судан Блэк Б.

Судан черный окрасил липидные капли внутри красные мышечные волокна в этом куске свинины, и он также окрасил большую треугольник внутримышечных (мраморных) жировых клеток.

Многие из клеточных функций, связанных с аэробными и анаэробными метаболизм в мышечных волокнах довольно прост.Аэробные волокна находятся

  • обслуживаются более плотной капиллярной сеткой, чем волокна с плохой аэробной потенциал;
  • их саркоплазма содержит больше митохондрий и больше липидных капель; и
  • ферменты, участвующие в аэробном метаболизме, более концентрированы.

Однако количественно диапазон от аэробного до анаэробного метаболизма обычно является непрерывной переменной и редко разбивается на прерывистую шаги.

Из чего мы можем сделать два вывода:
  • Во-первых, изменяя pH среды инкубации с АТФазой, можно для получения более двух реакций окрашивания, и они не очень подходят хорошо с категориями гистохимических типов волокон.
  • Во-вторых, есть свидетельства того, что физиологическая дифференциация мышц волокна — это динамический баланс в разделении труда, и баланс может меняться в процессе роста или в ответ на изменение режима работы мышцы.
Таким образом, по мнению некоторых исследователей, гистохимическая категоризация мышечных волокон любым методом, включая миофибриллярную АТФазу, является просто полезным, но искусственным подразделение бесступенчатого диапазона. Мы (потому что это вид Поддерживаю) заключаю, что

мышечные волокна претерпевают постоянные изменения в течение жизни в качестве адаптации к изменяющимся функциональным требованиям, и этот «тип волокна» просто отражает состав волокна в любое конкретное время.

Однако перейдите на домашнюю страницу другого исследователя, и вы можете прочитать противоположный! С точки зрения сельского хозяйства это особенно интересно. поскольку это предполагает наличие некоторой степени генетических или связанных с развитием пластичность в сплошной среде волоконного типа. У мясных животных это может быть жизненно важное звено в соотношении роста мышц с качеством мяса.

Внутриклеточная дифференциация

Физиологическая дифференциация может варьироваться внутриклеточно. вдоль и поперек отдельных мышечных волокон, по крайней мере, до аэробного метаболизма обеспокоен.Но насколько известно в настоящее время, факторы, относящиеся к Скорость сокращения у отдельных волокон довольно одинакова. Аэробный метаболизм, на что указывает распределение митохондрий, может быть ступенчатым радиально так, чтобы субарколеммальная область имела высокий уровень аэробных нагрузок. обмен веществ при низком уровне центральной оси. Митохондрии периферических и аксиальные области мышечного волокна могут отличаться по своим биохимическим характеристикам, а также. пропорциональный объем митохондрий и максимальная скорость потребления кислорода линейно связаны между различными мышечными областями.

Субарколеммальная концентрация митохондрий в некоторых типах мышц. волокна могут быть связаны с тем, что поступление кислорода к индивидуальным мышечные волокна поступают в капилляры, которые наматываются на поверхность мышечное волокно. Митохондрии в красных волокнах крупнее, чем в промежуточных. или белые волокна, а в красных волокнах они могут образовывать толстые продольные столбцы между миофибриллами. Артериальные и венозные элементы мышечных капилляров имеют тенденцию меняться по длине волокна, при этом более длинные артериальные сегменты капилляров в белых мышцах по сравнению с красными мышца.

Это изображение снято с моего исследовательского компьютера показывает результаты автоматического картирования отложений SDH в мышце волокно. Темно-синий показывает высокий SDH, а голубой показывает низкий SDH (и голубой средний). Попав в компьютер, эти данные можно использовать для изучения радиальные градиенты активности СДГ у разных видов мясных животных. Градиенты были измерены у свиней, гусей, уток, и индейки.

Моторные нейроны оказывают долгосрочное регулирование физиологических и метаболических процессов. свойства волокон в их двигательной единице.Это часто называют трофическое действие нерва на мышцу. Слово трофический подразумевает что-то вроде питательный эффект, как будто нерв питает мышцу, но ее ток использование иногда включает возможные непитательные эффекты, такие как частота паттерны нервных импульсов к мышце. Идея о том, что нервы могут иметь трофическая функция далеко не нова и, вероятно, берет свое начало от древних наблюдения за дегенеративной судьбой, которая поражает многие органы, когда они были денервированы.

Трофические эффекты могут быть двунаправленными, поскольку есть некоторые ретроградные трофические эффекты, которые распространяются от мышцы к нерву. Например, пресинаптические терминальные бутоны на перикарии мотонейрона теряются, когда аксоны разрезаются, и они восстанавливаются при восстановлении нервно-мышечного контакта. Точно так же есть растворимые фракции скелетных мышц, которые могут способствовать рост и дифференцировка в спинном мозге эмбриона.

Типы гистохимических волокон важны для мясных животных, потому что они влияют на качество мяса.Гистохимические типы волокон также по-разному реагируют во время преобразование мышц в мясо, потому что они содержат разные уровни гликоген и анаэробные ферменты. До того, как стало известно, что волокна могут переход от одного типа к другому, связанные с ростом изменения типов волокон не контролировались должным образом в сельскохозяйственных экспериментах с мышечными волокнами гистохимия.

Этот трехмерный график показывает виды изменений, которые могут возникают, когда кластеры типа волокон трансформируются во время роста мышц.

  • СВИНЬИ Различия в красном цвете различных свиных мышц связаны с распространением аэробных и анаэробных мышечных волокон. An Необычной особенностью большинства свиных мышц является то, что они имеют склонность к аэробным волокнам. быть расположенным в центре их пучков — это более экстремально, чем в любом другом месте. другие виды еще не идентифицированы. Таким образом, концентрическое расположение первичных мышечные трубки и вторичные волокна плода сохраняются после рождения. Причина почему он хорошо сохраняется у свиней, но становится беспорядочным у других видов — это неизвестный.В длинной мышце спины дифференциация типов волокон на основа активности аэробных ферментов слабо развита при рождении, но становится хорошо развитым к 2 неделям. Процент белых волокон в свиные мышцы различаются между породами и связаны с тем, насколько Повышена мясная продуктивность породы за счет селекции. В в мышцах диких свиней преобладают красные волокна, а в мышцах наиболее У улучшенных пород преобладают белые волокна большого диаметра.В Свиньи, многие мышцы показывают изменения, связанные с ростом в пропорциях гистохимических типов волокон.

  • ОВЕЦЫ И СКОТНИКИ Концентрическое пучковидное расположение типов волокон трудно увидеть, а соотношение типов волокон меняется во время роста.

Биология — MCAT Biology

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает одно или несколько ваших авторских прав, сообщите нам об этом, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в виде ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатов), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Наука о мясе: сравнительная таблица мышц

Мышцы которые используются в течение длительных периодов активности, такие как стояние или ходьба, состоят из мускулов с волокнами, которые называются медленными . Поскольку эти мышцы используются постоянно, они нужен постоянный источник энергии. Белок миоглобин хранит кислород в мышечных клетках, которые используют кислород для извлечения энергии, необходимой для постоянной активности. Чем больше миоглобина в клетках, тем краснее, или темнее, мясо.

Мышцы которые используются в ситуациях, когда быстрые всплески активности необходимы, например, бегство от опасности, состоят из волокон, называемых быстросокращающимися . Эти мышцы получают энергию от гликогена, который также хранится в мышцах.

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Цыплята проводят много времени, блуждая или стоя.Их мышцы бедер и ног задействованы постоянно, поэтому мясо из этих частей темное. Поскольку они редко летают, и то только на очень короткие расстояния мясо, которое происходит от груди и крыльев белого цвета. В отличие, много летают дикие птицы, например, утки; мясо из их грудь и крылья темные.
Крупный рогатый скот много времени проводят стоя, поэтому их мускулы постоянно используется.Следовательно, у говядины достаточно высокая концентрация миоглобина и темно-красный цвет.
Свиньи также могут проводить довольно много времени стоя и в роуминге вокруг. Розовый цвет свинины обусловлен миоглобином, но потому что животные, используемые для свинины, молодые и маленькие, их мускулы менее развиты и меньше Работа.Таким образом, у свиней концентрация миоглобина ниже. в их мышцах, чем у коров.
Рыбы плавают в воде и не нуждаются в постоянной мышечной энергии чтобы поддержать свои скелеты. Большинство рыбного мяса белое, с небольшим количеством красного мяса вокруг плавников и хвоста, которые используется для плавания.Красный цвет некоторых рыб, таких как лосось и форель, это связано с астаксантином, естественным пигмент, встречающийся в ракообразных, которых они поедают.

Люди также имеют оба типа волокон.Однако в отличие от животные и рыбы, быстро и медленно сокращающиеся волокна человека не может быть так четко очерчен. Оба типа рассыпаны по всему телу.

в среднем у человека около 50% медленных и 50% быстро сокращающихся волокон. Профессиональные спортсмены могут иметь более высокий процент того или иного типа.Например, олимпийские спринтеры может иметь до 80% быстро сокращающихся волокон и на большие расстояния у бегунов может быть до 80% медленных сокращений. Тяжелоатлеты нужны быстро сокращающиеся волокна для быстрого набора силы, а пловцам на длинные дистанции нужно постоянное движение обеспечивается медленными волокнами. Когда ты переворачиваешься диаграмма человека вверху страницы, вы получить очень простое представление о том, какие мышцы более распространены у спринтеров и бегунов на длинные дистанции.Исследовать продолжается, но кажется, что есть генетическая предрасположенность за то, что одного волокна больше, чем другого, и что вы не можете кардинально изменить соотношение волокон, которые вы рождены с.

Механические свойства красных и белых плавательных мышц в зависимости от положения вдоль тела угря Anguilla anguilla | Журнал экспериментальной биологии

Колеблющаяся плавающая рыба использует бегущую назад волну боковой кривизны, чтобы продвигаться по воде.Эта механическая волна соответствует возникновению ритмичных, почти синусоидальных, изменений длины в мышечных волокнах плавания. Наблюдения за целой плавающей рыбой (рис. 1) показали, что фаза электромиографической (ЭМГ) активности относительно синусоидального движения мышечных волокон систематически изменяется по длине рыбы. На ростральном конце рыбы ЭМГ-активность начинается незадолго до того момента, когда мышечные волокна начинают сокращаться. ЭМГ-активность начинается прогрессивно раньше в мышечных волокнах ближе к хвостовому концу рыбы, т.е.е. стимуляция начинается раньше в растягивающей части цикла движения. Эта закономерность, по-видимому, одинакова у нескольких видов, в том числе у рыб с разными стилями плавания и формами тела.

Как этот рисунок влияет на способность осевых мышц в разных продольных положениях генерировать силу, работу и мощность? Эксперименты на изолированной мышце (белая мышца, например, Altringham et al., 1993; Curtin and Woledge, 1996; James et al., 1998; Джонсон и Джонстон, 1991; красная мышца, например Алтрингем и Джонстон, 1990; Кафлин, 2000; Рим и др., 1992; розовая мышца, например Coughlin and Rome, 1996) показали, что выходная мощность мышц сильно зависит от фазы стимуляции во время синусоидального движения. Когда фаза стимула изменяется при постоянном рабочем цикле стимула и частоте движения, может быть определена оптимальная фаза, при которой вырабатывается максимальная мощность; на более высоких или более низких фазах выходная мощность ниже. Эта взаимосвязь обнаруживается как в быстрых, так и в медленно сокращающихся волокнах (Curtin and Woledge, 1993a; Curtin and Woledge, 1993b).Таким образом, фаза стимула — это внешний фактор, воздействующий на мышцу плавающей рыбы, который определяет, какую силу мышца вносит в движение. Рабочий цикл стимула и характер деформации — другие примеры внешних факторов, влияющих на мощность.

Эксперименты с изолированными мышцами также показали, что у рыб, как и у других животных, внутренние свойства мышечных волокон сильно различаются. Другими словами, когда применяется идентичный внешний вызов (образец стимула и напряжения), сократительная реакция зависит от источника мышцы.Быстрые белые волокна и медленные красные волокна являются наиболее очевидными примерами волокон с различными внутренними свойствами. Однако внутренние свойства также различаются даже в пределах одного типа волокна, быстрые или медленные. Кроме того, существуют явные различия во внутренних свойствах волокон из разных участков по длине тела у некоторых, но не у всех видов рыб. Наиболее часто сообщаемые различия в мышцах рыб связаны с кинетикой изометрических подергиваний или тетани. Как показывают примеры на рисунке 2, существуют разительные различия в продолжительности расслабления (время, необходимое для уменьшения силы после окончания стимуляции).У видов, у которых обнаружены вариации, мышечным волокнам каудального конца требуется больше времени, чтобы расслабиться. Altringham et al. (Altringham et al., 1993) и Rome et al. (Rome et al., 1993) обсуждают, как вариации внутренних свойств соотносятся с внешними факторами, действующими на рыбу, что приводит к усилению мышечной производительности по сравнению с тем, что можно было бы достичь с помощью однородных внутренних свойств. В случае сайды Pollachius virens (Altringham et al., 1993) более медленное расслабление хвостовой мышцы обеспечивает ее активность во время удлинения и, таким образом, из-за своей жесткости может действовать как эффективный передатчик мощности.В случае scup Stenotomus chrysops (Rome et al., 1993) изменение времени релаксации, наряду с другими факторами, способствует тому, чтобы мышцы могли выполнять положительную работу во всех частях тела.

Об экспериментах, подобных описанным выше, ранее не сообщалось для изолированных мышц угловатых пловцов, в которых бегущая волна кривизны может быть выраженной и иметь большую амплитуду по всей длине тела во время некоторых из множества различных используемых режимов плавания ( D’Août and Aerts, 1999).Несмотря на явную разницу в появлении механической волны, относительное время между началом активации и началом укорочения у угловатых пловцов (минога и угорь) аналогично таковому у пловцов с панцирной формой (см.

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *