Железо вещество: ICSC 1577 — ОКСИД ЖЕЛЕЗА (III)

Содержание

Железо

Железо
Атомный номер 26
Внешний вид простого вещества ковкий, вязкий металл серебристо-белого цвета
Свойства атома
Атомная масса
(молярная масса)
55,847 а. е. м. (г/моль)
Радиус атома 126 пм
Энергия ионизации
(первый электрон)
759,1 (7,87) кДж/моль (эВ)
Электронная конфигурация [Ar] 3d6 4s2
Химические свойства
Ковалентный радиус 117 пм
Радиус иона (+3e) 64 (+2e) 74 пм
Электроотрицательность
(по Полингу)
1,83
Электродный потенциал Fe←Fe3+ −0,04 В
Fe←Fe2+ −0,44 В
Степени окисления 6, 3, 2, 0, −2
Термодинамические свойства простого вещества
Плотность 7,874 г/см³
Молярная теплоёмкость 25,14[1]Дж/(K·моль)
Теплопроводность 80,4 Вт/(м·K)
Температура плавления 1812 K
Теплота плавления 247,1 кДж/кг 13,8 кДж/моль
Температура кипения 3134 K
Теплота испарения ~6088 кДж/кг ~340 кДж/моль
Молярный объём 7,1 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая объёмноцентрированная
Параметры решётки 2,866 Å
Отношение c/a
Температура Дебая 460 K

 

Fe
26
55,847
[Ar]3d64s2
Железо

Железо — элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 26. Обозначается символом Fe (Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия).

Простое вещество железо (CAS-номер: 7439-89-6) — ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

 

На самом деле железом обычно называют его сплавы с малым содержанием примесей (до 0,8 %), которые сохраняют мягкость и пластичность чистого металла. Но на практике чаще применяются сплавы железа с углеродом: сталь (до 2 % углерода) и чугун (более 2 % углерода), а также нержавеющая (легированная) сталь с добавками легирующих металлов (хром, марганец, никель и др.). Совокупность специфических свойств железа и его сплавов делают его «металлом № 1» по важности для человека.

В природе железо редко встречается в чистом виде, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре — 4,65 % (4-е место после O, Si, Al). Считается также, что железо составляет бо́льшую часть земного ядра.

История

Железо как инструментальный материал известно с древнейших времён, самые древние изделия из железа, найденные при археологических раскопках, датируются 4-м тысячелетием до н. э. и относятся к древнешумерской и древнеегипетской цивилизациям. Это наконечники для стрел и украшения из метеоритного железа, то есть, сплава железа и никеля (содержание последнего колеблется от 5 до 30 %), из которого состоят метеориты. От их небесного происхождения идёт, видимо, одно из наименований железа в греческом языке: «сидер» (а на латыни это слово значит «звёздный»).

Изделия из железа, полученного искусственно, известны со времени расселения арийских племён из Европы в Азию и острова Средиземного моря (4—3-е тысячелетие до н. э.). Самый древний железный инструмент из известных — стальное долото, найденное в каменной кладке пирамиды Хеопса в Египте (построена около 2550 года до н. э.). Железо часто упоминается в древнейших (3-е тысячелетие до н. э.) текстах хеттов, основавших свою империю на территории современной Анатолии в Турции. Например, в тексте хеттского царя Анитты (около 1800 года до н. э.) говорится:

Когда на город Пурусханду в поход я пошел, человек из города Пурусханды ко мне поклониться пришел (…?) и он мне 1 железный трон и 1 железный скипетр (?) в знак покорности (?) преподнес.

В этом тексте железо обозначается словом «par-zi-lum» (сравните латинское «ferrum» и русское «железо»), что, скорее всего, значит «олово всадников» — от древнеарийских слов «PARSA» или «FERSY» (всадник — сравните этноним «персы», отсюда же шахматная фигура «ферзь», и латинские слова «persona» и «partia»), и корня «ZIL» (олово, и вообще белый металл).

В древности мастерами железных изделий слыли халибы, которых Геродот перечисляет в числе эллинских племён Малой Азии, подвластных Крезу. Халибы жили на севере державы Хеттов, у побережья Чёрного моря возле устья реки Галис (современный г. Самсун в Турции), и от их имени происходит греч. Χάλυβας — «сталь». Аристотель описал их способ получения стали: халибы несколько раз промывали речной песок их страны — видимо, таким способом (теперь это называют флотацией) выделяли тяжёлую железосодержащую фракцию породы, добавляли какое-то огнеупорное вещество, и плавили в печах особой конструкции; полученный таким образом металл имел серебристый цвет и был нержавеющим. Из этого процесса, видимо, возникло и название «руда», которое на латыни значит «мокрый» — то есть, «вымытый».

 

В качестве сырья для выплавки стали использовались магнетитовые пески, которые часто встречаются по всему побережью Чёрного моря: эти магнетитовые пески состоят из смеси мелких зёрен магнетита, титано-магнетита или ильменита, и обломков других пород, так что выплавляемая халибами сталь была легированной, и обладала отличными свойствами. Такой своеобразный способ получения железа не из руды говорит о том, что халибы, в основном, распространили железо как технологический материал, но их способ не мог быть методом повсеместного промышленного производства железных изделий. Однако их производство послужило толчком для дальнейшего развития металлургии железа.

 

Судя по греческому названию инструментальных металлов χαλκός (это слово обозначает и бронзу, и железо), можно понять, что арийские племена нашли способ выделки железа во время перехода в Азию через Кавказ, а именно — в Колхиде (др.-греч. Κολχίς), так как другого удобного сухопутного пути из Европы в Азию не было. Пройдя степи Причерноморья, они оставили многочисленные памятники культуры бронзового века (так называемая «пахотно-скотоводческая культура»), и двинулись дальше — на юг. Конечно же, по пути они искали сырьё для изготовления бронзовых орудий, и так обнаружили свойства причерноморских песков, дающих новый твёрдый металл — железо. Видимо, сперва они приняли его за олово (первые металлурги плохо различали металлы), и это подтверждается также тем, что название «сталь» в языках северных арийцев (романских, германских, славянских) явно происходит от слова «STANN» через аберрацию N-L, а у римлян это слово обозначало олово. То есть, пытаясь найти олово для бронзы, они обнаружили металл, который оказался крепким и без сплавления с медью, и стали называть его по аналогии с оловом. Найденный тогда способ выплавки стальных изделий не позволял получать их в больших количествах, однако использовался более тысячи лет, пока не была разработана технология выплавки железа из руды, добываемой в копях.

 

Климент Александрийский в своём энциклопедическом труде «Строматы» упоминает, что по греческим преданиям железо (видимо, выплавка его из руды) было открыто на горе Иде — так называлась горная цепь возле Трои (в Илиаде она упоминается как гора Ида, с которой Зевс наблюдал за битвой греков с троянцами). Произошло это через 73 года после Девкалионова потопа, а этот потоп, согласно Паросской хронике, был в 1528 году до нашей эры, то есть метод выплавки железа из руды был открыт примерно в 1455 году до н. э. Однако из описания Климента не ясно, говорит ли он именно об этой горе в Передней Азии (Ида Фригийская у Вергилия), или же о горе Ида на острове Крит, о которой римский поэт Вергилий в Энеиде пишет:

 

Остров Юпитера, Крета, лежит средь широкого моря,

Нашего племени там колыбель, где высится Ида …

А римляне, как известно, были потомками малоазиатских троянцев, переселившихся в Италию после разрушения Трои. Могила их предводителя Энея до сих пор существует в местечке Пратика-ди-Маре возле Рима, и в ней был обнаружен железный жезл — символ власти, и другие предметы из железа и бронзы.

Более вероятно, что Климент Александрийский говорит именно о фригийской Иде возле Трои, так как там были найдены древние железные копи и очаги железоделательного производства. Видимо, ознакомившись с методом халибов, древние троянцы развили свой способ выплавки стали из руды, оказавшийся более производительным.

 

В самой глубокой древности железо ценилось дороже золота, и по описанию Страбона, у африканских племён за 1 фунт железа давали 10 фунтов золота, а по исследованиям историка Г. Арешяна стоимости меди, серебра, золота и железа у древних хеттов были в соотношении 1 : 160 : 1280 : 6400. В те времена железо использовалось как ювелирный металл, из него делали троны и другие регалии царской власти: например, в библейской книге Второзаконие 3,11 описан «одр железный» рефаимского царя Ога. В гробнице Тутанхамона (около 1350 года до н. э.) был найден кинжал из железа в золотой оправе — возможно, подаренный хеттами в дипломатических целях. Но хетты не стремились к широкому распространению железа и его технологий, что видно и из дошедшей до нас переписки египетского фараона и его тестя — царя Хеттов. Фараон просит прислать побольше железа, а царь хеттов уклончиво отвечает, что запасы железа иссякли, а кузнецы заняты на сельскохозяйственных работах, поэтому он не может выполнить просьбу царственного зятя. Как видно, хетты старались использовать свои знания для достижения военных преимуществ, и не давали другим возможности сравняться с ними. Видимо, поэтому железные изделия получили широкое распространение только после Троянской войны и падения державы хеттов, когда благодаря торговой активности греков технология железа стала известной многим, и были открыты железные месторождения и рудники. Так на смену «Бронзовому» веку настал век «Железный».

 

По описаниям Гомера, хотя во время Троянской войны (примерно 1250 год до н. э.) оружие было в основном из меди и бронзы, но железо уже было хорошо известно и пользовалось большим спросом, хотя больше как драгоценный металл. Например, в 23-й песне «Илиады» Гомер рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. Это железо ахейцы добывали у троянцев и сопредельных народов (Илиада 7,473), в том числе у халибов, которые воевали на стороне троянцев:

 

Прочие мужи ахейские меной вино покупали,

Те за звенящую медь, за седое железо меняли,

Те за воловые кожи или волов круторогих,

Те за своих полоненых. И пир уготовлен веселый…

Возможно, железо было одной из причин, побудивших греков-ахейцев двинуться в Малую Азию, где они узнали секреты его производства. А раскопки в Афинах показали, что уже около 1100 года до н. э. и позднее уже широко были распространены железные мечи, копья, топоры, и даже железные гвозди. В библейской книге Иисуса Навина 17,16 (ср. Судей 14,4) описывается, что филистимляне (библейские «PILISTIM», а это были протогреческие племена, родственные позднейшим эллинам, в основном пеласги) имели множество железных колесниц, то есть, в это время железо уже стало широко применяться в больших количествах.

Гомер в «Илиаде» и «Одиссее» называет железо «многотрудный металл», и описывает закалку орудий:

Расторопный ковач, изготовив топор иль секиру,

В воду металл, раскаливши его, чтоб двойную

Он крепость имел, погружает…

Гомер называет железо многотрудным, потому что в древности основным методом его получения был сыродутный процесс: перемежающиеся слои железной руды и древесного угля прокаливались в специальных печах (горнах — от древнего «Horn» — рог, труба, первоначально это была просто труба, вырытая в земле, обычно горизонтально в склоне оврага). В горне окислы железа восстанавливаются до металла раскалённым углём, который отбирает кислород, окисляясь до окиси углерода, и в результате такого прокаливания руды с углём получалось тестообразное кричное (губчатое) железо. Крицу очищали от шлаков ковкой, выдавливая примеси сильными ударами молота. Первые горны имели сравнительно низкую температуру — заметно меньше температуры плавления чугуна, поэтому железо получалось сравнительно малоуглеродистым. Чтобы получить крепкую сталь приходилось много раз прокаливать и проковывать железную крицу с углём, при этом поверхностный слой металла дополнительно насыщался углеродом и упрочнялся. И хотя это требовало больших трудов, изделия, полученные таким способом, были существенно более крепкими, чем бронзовые.

В дальнейшем научились делать более эффективные печи (в русском языке — домна, домница) для производства стали, и применили меха для подачи воздуха в горн. Уже римляне умели доводить температуру в печи до плавления стали (около 1400 градусов, а чистое железо плавится при 1535 градусах). При этом образуется чугун с температурой плавления 1100—1200 градусов, очень хрупкий в твёрдом состоянии (даже не поддающийся ковке), и не обладающий упругостью стали. Первоначально его считали вредным побочным продуктом (англ. pig iron, по-русски, свинское железо, чушки, откуда, собственно, и происходит слово чугун), но потом обнаружилось, что при повторном прожигании в печи с усиленным продуванием воздуха чугун превращается в сталь хорошего качества, так как лишний углерод выгорает. Такой двухстадийный процесс производства стали из чугуна оказался более простым и выгодным, чем кричный, и этот принцип используется без особых изменений многие века, оставаясь и до наших дней основным способом производства железных материалов.

Происхождение названия

Схема атома железа (условно)

Версии происхождения славянского слова «железо» (белор. жалеза, болг. желязо, укр. залізо, польск. Żelazo, словен. Železo).

 

Наиболее вероятно, что это название происходит от древнеарийского корня «ZIL», которым обозначали олово и вообще белые металлы (в том числе серебро — «zilber», и название «цинк» получилось из этого же слова аберрацией L-N). От него же, видимо, происходит и санскритское «жальжа», что означает «металл, руда». Другая версия усматривает в слове славянский корень «лез», тот же, что и в слове «лезвие» (так как железо в основном употреблялось на изготовление оружия), третье связывает с греческим словом χαλκός, что означало железо и медь. Есть также связь между словом «желе» и студнеобразной консистенцией «болотной руды», из которой некоторое время добывался металл.

 

Название природного карбоната железа (сидерита) происходит от sidereus — звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно. В частности древнегреческое слово сидерос (σίδηρος) для железа и латинское sidus, означающее «звезда», вероятно, имеют общее происхождение.

Изотопы железа

Изотоп железа 56Fe относится к наиболее стабильным ядрам: все следующие элементы могут уменьшить энергию связи на нуклон путём распада, а все предыдущие элементы, в принципе, могли бы уменьшить энергию связи на нуклон за счёт синтеза. Полагают, что железом оканчивается ряд синтеза элементов в ядрах нормальных звёзд, а все последующие элементы могут образоваться только в результате взрывов сверхновых.

Геохимия железа

Гидротермальный источник с железистой водой. Окислы железа окрашивают воду в бурый цвет

Железо — один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %. Из металлов железо уступает по распространённости в коре только алюминию. При этом в ядре находится около 86 % всего железа, а в мантии 14 %.

Геохимические свойства железа

Важнейшая геохимическая особенность железа — наличие у него нескольких степеней окисления. Железо в нейтральной форме — металлическое — слагает ядро земли, возможно, присутствует в мантии и очень редко встречается в земной коре. Закисное железо FeO — основная форма нахождения железа в мантии и земной коре. Окисное железо Fe2O3 характерно для самых верхних, наиболее окисленных, частей земной коры, в частности, осадочных пород.

По кристаллохимическим свойствам ион Fe2+ близок к ионам Mg2+ и Ca2+ — другим главным элементам, составляющим значительную часть всех земных пород. В силу кристаллохимического сходства железо замещает магний и, частично, кальций во многих силикатах. При этом содержание железа в минералах переменного состава обычно увеличивается с уменьшением температуры.

Минералы железа

В земной коре железо распространено достаточно широко — на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало — в кислых и средних породах.

Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe2O4, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O), а также шпатовый железняк (сидерит, карбонат железа(II), FeCO3; содержит около 48 % Fe). Гётит и гидрогётит чаще всего встречаются в корах выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe(3PO4)2·8H2O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты.

В природе также широко распространены сульфиды железа — пирит FeS2 (серный или железный колчедан) и пирротин. Они не являются железной рудой — пирит используют для получения серной кислоты, а пирротин часто содержит никель и кобальт.

По запасам железных руд Россия занимает первое место в мире. Содержание железа в морской воде — 1×10−5—1×10−8 %.

Получение

В промышленности железо получают из железной руды, в основном из гематита (Fe2O3) и магнетита (Fe3O4).

Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.

Первый этап производства — восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.

В печи углерод кокса окисляется до монооксида углерода (угарного газа) кислородом воздуха:

2C + O2 → 2CO↑.

В свою очередь, угарный газ восстанавливает железо из руды:

3CO + Fe2O3 → 2Fe + 3CO2↑.

Флюс добавляется для извлечения нежелательных примесей из руды, в первую очередь силикатов, таких как кварц (диоксид кремния). Типичный флюс содержит известняк (карбонат кальция) и доломит (карбонат магния). Против других примесей используют другие флюсы.

Действие флюса: карбонат кальция под действием тепла разлагается до оксида кальция (негашёная известь):

CaCO3 → CaO + CO2↑.

Оксид кальция соединяется с диоксидом кремния, образуя шлак:

CaO + SiO2 → CaSiO3.

Шлак, в отличие от диоксида кремния, плавится в печи. Более лёгкий, чем железо, шлак плавает на поверхности, и его можно сливать отдельно от металла. Шлак затем употребляется в строительстве и сельском хозяйстве. Расплав железа, полученный в доменной печи, содержит довольно много углерода (чугун). Кроме случаев, когда чугун используется непосредственно, он требует дальнейшей переработки.

Излишний углерод и другие примеси (сера, фосфор) удаляют из чугуна окислением в мартеновских печах или в конвертерах. Электрические печи используют и для выплавки легированных сталей.

Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, содержащими водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями как сера и фосфор — обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах.

Химически чистое железо получается электролизом растворов его солей.

Физические свойства

Железо — типичный металл, в свободном состоянии — серебристо-белого цвета с сероватым оттенком. Чистый металл пластичен, различные примеси (в частности — углерод) повышают его твёрдость и хрупкость. Обладает ярко выраженными магнитными свойствами. Часто выделяют так называемую «триаду железа» — группу трёх металлов (железо Fe, кобальт Co, никель Ni), обладающих схожими физическими свойствами, атомными радиусами и значениями электроотрицательности.

Для железа характерен полиморфизм, он имеет четыре кристаллические модификации:

Металловедение не выделяет β-Fe как отдельную фазу[4], и рассматривает её как разновидность α-Fe. При нагреве железа или стали выше точки Кюри (769 °C ≈ 1043 K) тепловое движение ионов расстраивает ориентацию спиновых магнитных моментов электронов, ферромагнетик становится парамагнетиком — происходит фазовый переход второго рода, но фазового перехода первого рода с изменением основных физических параметров кристаллов не происходит.

Для чистого железа при нормальном давлении, с точки зрения металловедения, существуют следующие устойчивые модификации:

  • От абсолютного нуля до 910 °C устойчива α-модификация с объёмноцентрированной кубической (ОЦК) кристаллической решёткой. Твёрдый раствор углерода в α-железе называется ферритом.
  • От 910 до 1400 °C устойчива γ-модификация с гранецентрированной кубической (ГЦК) кристаллической решёткой. Твёрдый раствор углерода в γ-железе называется аустенитом.
  • От 910 до 1539 °C устойчива δ-модификация с объёмноцентрированной кубической (ОЦК) кристаллической решёткой. Твёрдый раствор углерода в δ-железе (также как и в α-железе) называется ферритом. Иногда различают высокотемпературный δ-феррит и низкотемпературный α-феррит (или просто феррит), хотя их атомные структуры одинаковы.

Наличие в стали углерода и легирующих элементов существенным образом изменяет температуры фазовых переходов (см. фазовую диаграмму железо — углерод).

  • В области высоких давлений (свыше 104 МПа, 100 тыс. атм.) возникает модификация ε-железа с гексагональной плотноупакованной (ГПУ) решёткой.

Явление полиморфизма чрезвычайно важно для металлургии стали. Именно благодаря α—γ переходам кристаллической решётки происходит термообработка стали. Без этого явления железо как основа стали не получило бы такого широкого применения.

Железо тугоплавко, относится к металлам средней активности. Температура плавления железа 1539 °C, температура кипения — 2862 °C.

Химические свойства

Основные степени окисления железа — +2 и +3.

При хранении на воздухе при температуре до 200 °C железо постепенно покрывается плотной плёнкой оксида, препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближённо её химическую формулу можно записать как Fe2O3·xH2O.

С кислородом железо реагирует при нагревании. При сгорании железа на воздухе образуется оксид Fe3O4, при сгорании в чистом кислороде — оксид Fe2O3. Если кислород или воздух пропускать через расплавленное железо, то образуется оксид FeO. При нагревании порошка серы и железа образуется сульфид, приближённую формулу которого можно записать как FeS.

Железо при нагревании реагирует с галогенами. Так как FeF3 нелетуч, железо устойчиво к действию фтора до температуры 200—300 °C. При хлорировании железа (при температуре около 200 °C) образуется летучий FeCl3. Если взаимодействие железа и брома протекает при комнатной температуре или при нагревании и повышенном давлении паров брома, то образуется FeBr3. При нагревании FeCl3 и, особенно, FeBr3 отщепляют галоген и превращаются в галогениды железа(II). При взаимодействии железа и иода образуется иодид Fe3I8.

При нагревании железо реагирует с азотом, образуя нитрид железа Fe3N, с фосфором, образуя фосфиды FeP, Fe2P и Fe3P, с углеродом, образуя карбид Fe3C, с кремнием, образуя несколько силицидов, например, FeSi.

При повышенном давлении металлическое железо реагирует с оксидом углерода(II) CO, причём образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO)5. Известны также карбонилы железа составов Fe2(CO)9 и Fe3(CO)12. Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена состава (η5-C5H5)2Fe.

Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. В концентрированной серной и азотной кислотах железо не растворяется, так как прочная оксидная плёнка пассивирует его поверхность.

С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа(II):

Fe + 2HCl → FeCl2 + H2↑;

Fe + H2SO4 → FeSO4 + H2↑.

При взаимодействии железа с приблизительно 70%-й серной кислотой реакция протекает с образованием сульфата железа(III):

2Fe + 6H2SO4 → Fe2(SO4)3 + 3SO2↑ + 6H2O.

Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH)2. Оксид железа(III) Fe2O3 слабо амфотерен, ему отвечает ещё более слабое, чем Fe(OH)2, основание Fe(OH)3, которое реагирует с кислотами:

2Fe(OH)3 + 3H2SO4 → Fe2(SO4)3 + 6H2O.

Гидроксид железа(III) Fe(OH)3 проявляет слабо амфотерные свойства, он способен реагировать только с концентрированными растворами щелочей:

Fe(OH)3 + 3КОН → K3[Fe(OH)6].

Образующиеся при этом гидроксокомплексы железа(III) устойчивы в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причём в осадок выпадает Fe(OH)3.

Соединения железа(III) в растворах восстанавливаются металлическим железом:

Fe + 2FeCl3 → 3FeCl2.

При хранении водных растворов солей железа(II) наблюдается окисление железа(II) до железа(III):

4FeCl2 + O2 + 2H2O → 4Fe(OH)Cl2.

Из солей железа(II) в водных растворах устойчива соль Мора — двойной сульфат аммония и железа(II) (NH4)2Fe(SO4)2·6Н2O.

Железо(III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO4)2 — железокалиевые квасцы, (NH4)Fe(SO4)2 — железоаммонийные квасцы и т. д.

При действии газообразного хлора или озона на щелочные растворы соединений железа(III) образуются соединения железа(VI) — ферраты, например, феррат(VI) калия K2FeO4. Имеются сообщения о получении под действием сильных окислителей соединений железа(VIII).

Для обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe3+ с тиоцианат-ионами SCN. При взаимодействии ионов Fe3+ с анионами SCN образуется ярко-красный роданид железа Fe(SCN)3. Другим реактивом на ионы Fe3+ служит гексацианоферрат(II) калия K4[Fe(CN)6] (жёлтой кровяная соль). При взаимодействии ионов Fe3+ и [Fe(CN)6]4− выпадает ярко-синий осадок берлинской лазури:

4K4[Fe(CN)6] + 4Fe3+ → 4KFeIII[FeII(CN)6]↓ + 12K+.

Реактивом на ионы Fe2+ в растворе может служить гексацианоферрат(III) калия K3[Fe(CN)6] (красная кровяная соль). При взаимодействии ионов Fe2+ и [Fe(CN)6]3− выпадает осадок турнбулевой сини:

3K3[Fe(CN)6] + 3Fe2+ → 3KFeII[FeIII(CN)6]↓ + 6K+.

Интересно, что берлинская лазурь и турнбулева синь — две формы одного и того же вещества, так как в растворе устанавливается равновесие:

KFeIII[FeII(CN)6] ↔ KFeII[FeIII(CN)6].

Применение

Железная руда

Железо — один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.

  • Железо является основным компонентом сталей и чугунов — важнейших конструкционных материалов.

    Железо может входить в состав сплавов на основе других металлов — например, никелевых.

    Магнитная окись железа (магнетит) — важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.

    Ультрадисперсный порошок магнетита используется в черно-белых лазерных принтерах в качестве тонера.

    Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.

    Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.

    Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.

    Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.

Биологическое значение железа

 

В живых организмах железо является важным микроэлементом, катализирующим процессы обмена кислородом (дыхания). В организме взрослого человека содержится около 3,5 грамма железа (около 0,02 %), из которых 75 % являются главным действующим элементом гемоглобина крови, остальное входит в состав ферментов других клеток, катализируя процессы дыхания в клетках. Недостаток железа проявляется как болезнь организма (хлороз у растений и анемия у животных).

 

Обычно железо входит в ферменты в виде комплекса, называемого гемом. В частности, этот комплекс присутствует в гемоглобине — важнейшем белке, обеспечивающем транспорт кислорода с кровью ко всем органам человека и животных. И именно он окрашивает кровь в характерный красный цвет.

 

Комплексы железа, отличные от гема, встречаются, например, в ферменте метан-моноксигеназе, окисляющем метан в метанол, в важном ферменте рибонуклеотид-редуктазе, который участвует в синтезе ДНК.

 

Неорганические соединения железа встречается в некоторых бактериях, иногда используется ими для связывания азота воздуха.

 

В организм животных и человека железо поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, свёкла). Интересно, что некогда шпинат ошибочно был внесён в этот список (из-за опечатки в результатах анализа — был потерян «лишний» ноль после запятой).

 

Суточная потребность человека в железе следующая: дети — от 4 до 18 мг, взрослые мужчины — 10 мг, взрослые женщины — 18 мг, беременные женщины во второй половине беременности — 33 мг. У женщин потребность несколько выше, чем у мужчин. Как правило, железа, поступающего с пищей, вполне достаточно, но в некоторых специальных случаях (анемия, а также при донорстве крови) необходимо применять железосодержащие препараты и пищевые добавки (гематоген, ферроплекс).

 

Содержание железа в воде больше 1—2 мг/л значительно ухудшает её органолептические свойства, придавая ей неприятный вяжущий вкус, и делает воду малопригодной для использования, вызывает у человека аллергические реакции, может стать причиной болезни крови и печени (гемохроматоз). ПДК железа в воде 0,3 мг/л.

 

Избыточная доза железа (200 мг и выше) может оказывать токсическое действие. Передозировка железа угнетает антиоксидантную систему организма, поэтому употреблять препараты железа здоровым людям не рекомендуется.

 

Соединения железа

Оксиды железа

Гидроксиды железа

Железнение

Железо самородное

ICSC 1577 — ОКСИД ЖЕЛЕЗА (III)

ICSC 1577 — ОКСИД ЖЕЛЕЗА (III)
ОКСИД ЖЕЛЕЗА (III)ICSC: 1577
Октябрь 2004
CAS #: 1309-37-1
UN #: см. Примечания
EINECS #: 215-168-2

 ОСОБЫЕ ОПАСНОСТИПРОФИЛАКТИЧЕСКИЕ МЕРЫТУШЕНИЕ ПОЖАРА
ПОЖАР И ВЗРЫВНе горючее.      В случае возникновения пожара в рабочей зоне, использовать надлежащие средства пожаротушения.    

   
 СИМПТОМЫПРОФИЛАКТИЧЕСКИЕ МЕРЫПЕРВАЯ ПОМОЩЬ
ВдыханиеКашель. Избегать вдыхания пыли. Свежий воздух, покой. 
Кожа   
ГлазаПокраснение. Использовать защитные очки. Прежде всего промыть большим количеством воды в течение нескольких минут (снять контактные линзы, если это возможно сделать без затруднений), затем обратится за медицинской помощью.  
Проглатывание Не принимать пищу, напитки и не курить во время работы.   

ЛИКВИДАЦИЯ УТЕЧЕККЛАССИФИКАЦИЯ И МАРКИРОВКА
Индивидуальная защита: Респиратор с сажевым фильтром, подходящий для концентрации вещества в воздухе. Смести просыпанное вещество в закрытые контейнеры. 

Согласно критериям СГС ООН

 

Транспортировка
Классификация ООН
 

ХРАНЕНИЕ
 
УПАКОВКА
 

Исходная информация на английском языке подготовлена группой международных экспертов, работающих от имени МОТ и ВОЗ при финансовой поддержке Европейского Союза.
© МОТ и ВОЗ 2018

ОКСИД ЖЕЛЕЗА (III)ICSC: 1577
ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Агрегатное Состояние; Внешний Вид
КРАСНОВАТЫЙ ОТ КОРИЧНЕВОГО ДО ЧЕРНОГО ЦВЕТА КРИСТАЛЛИЧЕСКИЙ ИЛИ ПОРОШОК. 

Физические опасности
 

Химические опасности
Реагирует с монооксидом углерода. Приводит к появлению опасности взрыва. 

Формула: Fe2O3
Молекулярная масса: 159.7
Температура плавления: 1565°C
Плотность: 5.24 g/cm³
Растворимость в воде: не растворяется 


ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ И ЭФФЕКТЫ ОТ ВОЗДЕЙСТВИЯ

Пути воздействия
 

Эффекты от кратковременного воздействия
Может вызывать механическое раздражение. 

Риск вдыхания
Концентрация частиц в воздухе, вызывающая неприятные ощущения, может быть достигнута быстро при распылении, особенно в порошкообразном состоянии. 

Эффекты от длительного или повторяющегося воздействия
Повторяющееся или продолжительное вдыхание частиц пыли может оказать воздействие на легкие. Может привести к доброкачественному состоянию сидероза. 


Предельно-допустимые концентрации
TLV: (как Fe): (вдыхаемая фракция): 5 mg/m3, как TWA; A4 (не классифицируется как канцероген для человека).
MAK: канцерогенная категория: 3B 

ОКРУЖАЮЩАЯ СРЕДА
 

ПРИМЕЧАНИЯ
There is a UN number associated with ferric oxide but this relates to iron oxide, spent, or iron sponge, spent obtained from coal gas purification which is spontaneously combustible. 

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ
  Классификация ЕС
 

(ru)Ни МОТ, ни ВОЗ, ни Европейский Союз не несут ответственности за качество и точность перевода или за возможное использование данной информации.
© Версия на русском языке, 2018

Железо. Описание, свойства, происхождение и применение металла

Чистое железо (99,97%), очищенное методом электролиза

Железо — ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия).

СТРУКТУРА


Две модификации кристаллической решетки железа

Для железа установлено несколько полиморфных модификаций, из которых высокотемпературная модификация — γ-Fe(выше 906°) образует решетку гранецентрированного куба типа Сu (а0 = 3,63), а низкотемпературная — α-Fe-решетку центрированного куба типа α-Fe (a0 = 2,86).
В зависимости от температуры нагрева железо может находиться в трех модификациях, характеризующихся различным строением кристаллической решетки:

  1. В интервале температур от самых низких до 910°С —а-феррит (альфа-феррит), имеющий строение кристаллической решетки в виде центрированного куба;
  2. В интервале температур от 910 до 1390°С — аустенит, кристаллическая решетка которого имеет строение гранецентрированного куба;
  3. В интервале температур от 1390 до 1535°С (температура плавления) — д-феррит (дельта-феррит). Кристаллическая решетка д-феррита такая же, как и а-феррита. Различие между ними только в иных (для д-феррита больших) расстояниях между атомами.

При охлаждении жидкого железа первичные кристаллы (центры кристаллизации) возникают одновременно во многих точках охлаждаемого объема. При последующем охлаждении вокруг каждого центра надстраиваются новые кристаллические ячейки, пока не будет исчерпан весь запас жидкого металла.
В результате получается зернистое строение металла. Каждое зерно имеет кристаллическую решетку с определенным направлением его осей.
При последующем охлаждении твердого железа при переходах д-феррита в аустенит и аустенита в а-феррит могут возникать новые центры кристаллизации с соответствующим изменением величины зерна

СВОЙСТВА


Железная руда

В чистом виде при нормальных условиях это твердое вещество. Оно обладает серебристо-серым цветом и ярко выраженным металлическим блеском. Механические свойства железа включают в себя уровень твердости по шкале Мооса. Она равна четырем (средняя). Железо обладает хорошей электропроводностью и теплопроводностью. Последнюю особенность можно ощутить, дотронувшись до железного предмета в холодном помещении. Так как этот материал быстро проводит тепло, он за короткий промежуток времени забирает большую его часть из вашей кожи, и поэтому вы ощущаете холод.
Дотронувшись, к примеру, до дерева, можно отметить, что его теплопроводность намного ниже. Физические свойства железа — это и его температуры плавления и кипения. Первая составляет 1539 градусов по шкале Цельсия, вторая — 2860 градусов по Цельсию. Можно сделать вывод, что характерные свойства железа — хорошая пластичность и легкоплавкость. Но и это еще далеко не все. Также в физические свойства железа входит и его ферромагнитность. Что это такое? Железо, магнитные свойства которого мы можем наблюдать на практических примерах каждый день, — единственный металл, обладающий такой уникальной отличительной чертой. Это объясняется тем, что данный материал способен намагничиваться под действием магнитного поля. А по прекращении действия последнего железо, магнитные свойства которого только что сформировались, еще надолго само остается магнитом. Такой феномен можно объяснить тем, что в структуре данного металла присутствует множество свободных электронов, которые способны передвигаться.

ЗАПАСЫ И ДОБЫЧА


Железо — один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %.

Железо

В земной коре железо распространено достаточно широко — на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало — в кислых и средних породах.
Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe2O4, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O). Гётит и гидрогётит чаще всего встречаются в корах выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe3(PO4)2·8H2O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты.
Содержание железа в морской воде — 1·10−5-1·10−8 %
В промышленности железо получают из железной руды, в основном из гематита (Fe2O3) и магнетита (FeO·Fe2O3).
Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.
Первый этап производства — восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.
Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями, как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах. Химически чистое железо получается электролизом растворов его солей.

ПРОИСХОЖДЕНИЕ


Самородное железо

Происхождение теллурическое (земное) железо редко встречается в базальтовыхлавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe1-xS) и когенит (Fe3C), что объясняют как восстановление углеродом (в том числе и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO)n. В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами.
Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов — железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

ПРИМЕНЕНИЕ


Кольцо из железа

Железо — один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.
Железо является основным компонентом сталей и чугунов — важнейших конструкционных материалов.
Железо может входить в состав сплавов на основе других металлов — например, никелевых.
Магнитная окись железа (магнетит) — важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.
Ультрадисперсный порошок магнетита используется во многих чёрно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.
Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.
Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.
Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.
Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.
Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.


Железо (англ. Iron) — Fe

Молекулярный вес55.85 г/моль
Происхождение названиявозможно англо-саксонского происхождения
IMA статусдействителен, описан впервые до 1959 (до IMA)

КЛАССИФИКАЦИЯ


Hey’s CIM Ref1.57

Strunz (8-ое издание)1/A.07-10
Nickel-Strunz (10-ое издание)1.AE.05
Dana (7-ое издание)1.1.17.1

ФИЗИЧЕСКИЕ СВОЙСТВА


Цвет минералажелезно-черный
Цвет чертысерый
Прозрачностьнепрозрачный
Блескметаллический
Спайностьнесовершенная по {001}
Твердость (шкала Мооса)4,5
Изломв зазубринах
Прочностьковкий
Плотность (измеренная)7.3 — 7.87 г/см3
Радиоактивность (GRapi)0
Магнетизмферромагнетик

ОПТИЧЕСКИЕ СВОЙСТВА


Типизотропный
Цвет в отраженном светебелый
Люминесценция в ультрафиолетовом излучениине флюоресцентный

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА


Точечная группаm3m (4/m 3 2/m) — изометрический — гексаоктаэдральный
Пространственная группаIm3m (I4/m 3 2/m)
Сингониякубическая
Параметры ячейкиa = 2.8664Å
Двойникование(111) также в пластинчатых массах {112}
Морфологияв маленьких пузырьках

Интересные статьи:

mineralpro.ru   13.07.2016  

Урок по химии «Железо — химический элемент и простое вещество» (9 класс)

План-конспект урока по теме:

ЖЕЛЕЗО – ХИМИЧЕСКИЙ ЭЛЕМЕНТ И ПРОСТОЕ ВЕЩЕСТВО.

(интегрированный урок)

Мосиенко Валентина Владимировна, учитель химии МОУ СОШ № 32

г. Подольска, Московская область

Предмет: химия

Возраст детей: 9 класс

Место проведения: класс

Цели:

образовательная: расширить знания обучающихся о металлах, рассмотреть особенности строения электронных оболочек атомов металлов побочных подгрупп на примере железа, изучить физические и химические свойства железа – простого вещества, учить детей применять полученные знания и умения на практике;

воспитательная: воспитывать самостоятельность, трудолюбие, творческое отношение к учебе, прививать потребность в здоровом образе жизни, культуре питания человека, экологической культуре, воспитывать у обучающихся уверенность в себе, чувство ответственности, повышение своей самооценки;

развивающая: развивать творческие навыки, навыки работы с дополнительной литературой, работы в Интернете, навыки создания компьютерной презентации; способствовать развитию у обучающихся логического мышления, формирование умений устанавливать взаимосвязь между составом, строением и свойствами вещества, умения анализировать полученную информацию, поддерживать и развивать интерес к химии

Формируемые компетенции:

общеучебная, информационная, ценностно-смысловая, коммуникативная, личностного самосовершенствования.

Тип урока: урок изучения нового материала. Сообщение новых знаний и их совершенствование

Методы и педагогические приемы:

-самостоятельная познавательная деятельность при подготовке сообщений;

-беседа;

— постановка проблемных вопросов;

-частично – поисковый, химический эксперимент;

-письменный контроль и взаимоконтроль,

— дифференцированное домашнее задание

Межпредметные связи с историей, географией, биологией.

Оборудование:

-минералы железа: магнитный, бурый и красный железняк

-штатив для пробирок, пробирки, спиртовка, спички, держатель пробирок, железный гвоздь, железные опилки, магнит. раствор сульфата меди (II), скрепки, растворы соляной и серной кислот, колба, наполненная кислородом, концентрированная азотная кислота, сера

-технические средства: компьютер, медиапроектор, экран.

Ход урока.

Вступительное слово учителя.

Мы продолжаем изучение раздела – химия металлов. Предлагаю обучающимся отгадать загадку и сформулировать тему и вопросы, которые мы будем сегодня изучать на уроке.

Среди металлов самый славный,

Важнейший древний элемент,

В тяжелой индустрии главный,

Знаком с ним школьник и студент.

Родился в огненной стихии,

А сплав его течет рекой.

Важнее нет его в металлургии,

Он нужен всей стране родной.

Учащиеся дают ответ.

Тема и задачи урока уточняются учителем.(Высвечиваются на экране).

Итак, сегодня нам предстоит знакомство с химическим элементом и простым веществом – железом. Ввиду того, что информации о железе очень много, а мы ограничены во времени, этот урок будут помогать вести мне ребята, которые заранее подготовили для вас интересный материал по некоторым вопросам темы. Обучающиеся получили вопросы, на которые необходимо найти ответы в учебнике, дополнительной литературе, Интернете и создали презентацию в программе Power Point по изучаемому вопросу. Время выступления – до 5 минут.

План изучения темы.

(высвечивается на экране)

  1. Железо – химический элемент. Строение атома железа. Характерные степени окисления.

  2. Из истории железа.

  3. Нахождение железа в природе. Получение.

  4. Строение железа – простого вещества.

  5. Физические и химические свойства железа.

  6. Применение железа. Биологическая роль железа.

Учащиеся ведут в рабочих тетрадях конспект «Паспорт железа», который будет включать все пункты плана.

  1. Железо – химический элемент. Строение атома железа. Степени окисления.

Учитель:

Охарактеризуйте положение железа в ПСХЭ Д.И. Менделеева. (Ученик работает у доски)

Железо – элемент побочной подгруппы VIII группы 4-го периода ПСХЭ Д.И. Менделеева. Порядковый номер – 26. Это означает, что в состав атома железа входят 26 электронов и 26 протонов (заряд ядра +26). Относительная атомная масса железа – 56, следовательно, в состав ядра входят 30 протонов (56-26=30).

Чему равно число электронов на внешнем энергетическом уровне для металлов главных подгрупп? Как определить степень окисления металлов главных подгрупп?

Какие вам известны степени окисления, характерные для железа?

Как определить степень окисления металлов побочных подгрупп? (проблемный вопрос).

Обучающиеся сталкиваются с проблемой причинно-следственной связи: положение в ПСХЭ → строение атома → характерные степени окисления.

Учитель отмечает, что строение атомов элементов побочных подгрупп отличается от строения атомов главных подгрупп. Особенностью электронного строения элементов побочных подгрупп является заполнение электронами не последнего, а предпоследнего уровня. Записываем на доске распределение электронов в атоме железа по энергетическим уровням: +26Fe 2ē; 8; 14ē; 2ē

Составляем электронно-графическую формулу атома Fe.

Учащиеся дают ответ на вопрос о характерных степенях окисления железа.

Железо – такой же восстановитель, как и другие металлы, однако, в отличие от ранее изученных металлов, атомы железа при окислении отдают не только электроны последнего уровня, приобретая с.о. +2, но и способны к отдаче одного электрона с предпоследнего уровня, принимая при этом с.о. +3.

  1. Из истории железа. (станция Историческая)

Выступление учащегося.

Железо – один из семи металлов, известных человеку с глубокой древности (золото, серебро, медь, олово, свинец, железо, ртуть).

По археологической классификации третий и последний период первобытной эпохи, характеризующийся распространением железной металлургии и железных орудий, знаменует собой железный век, представление о котором возникло впервые еще в античном мире. В XVIII — начале XIX в. гипотезу о железном веке развивали уже многие ученые, в том числе и российские (А. Н. Радищев). В современном значении этот термин был введен в употребление в середине XIX в. датским археологом К. Ю. Томсоном и вскоре распространился в литературе наряду с терминами «каменный век» и «бронзовый век».

В отличие от других металлов железо, кроме метеоритного, почти не встречается в природе в чистом виде. Этот металл можно назвать доисторическим, т.к. он применялся человеком еще до изобретения письменности. Наиболее древний сохранившийся образец кованого железа обнаружен при изучении большой пирамиды Хеопса и принадлежит к 2000—1500 гг. до н. э. Однако не только в Египте, но и в Древней Греции было известно о существовании железа. Так, герои «Илиады» Гомера облачались в «меднокованные доспехи» и имели «сердца, твердые как железо», а героев его «Одиссеи», победителей игр, награждали куском золота и куском железа.

Астрологи того времени утверждали, что каждой планете на небе соответствует свой металл на Земле, например красноватому Марсу — гремящее в боях железо. Каждая планета издревле обозначалась особым знаком. Этими же знаками долгое время (вплоть до конца XIX в.) обозначали и «родственные» этим планетам металлы. Железо обозначали в виде копья и щита (♂).

Ученые предполагают, что первое железо, попавшее в руки человека, было метеоритного происхождения. Не случайно на некоторых древних языках железо именуется «небесным камнем». Самый крупный железный метеорит нашли в Африке, он весил около 60 т. А во льдах Гренландии нашли железный метеорит весом 33 т. Уже в древности из этих небесных тел, так как они были прочными и твердыми, изготавливались различные предметы. Современные химические анализы огромного числа метеоритов, упавших на нашу планету, показали, что в составе железных метеоритов на долю железа приходится 91%.

В Америке, Австралии и на большинстве островов Тихого океана железо стало известно лишь во II тысячелетии н. э. вместе с появлением в этих областях европейцев. Предполагают, что железо было известно некоторым племенам Центральной и Северной Африки, однако каких-либо достоверных данных по этому вопросу нет.

Культурой железного века называется обычно культура первобытных племен Европы и Азии, живших к северу от области древних рабовладельческих цивилизаций. В них металлургия железа распространилась в VIII—VII вв. до н. э. Так начался железный век — тот век, в котором мы и сейчас еще живем. Ведь в настоящее время железные сплавы составляют почти 90% всего количества металлов и металлических сплавов.

  1. Нахождение железа в природе. Получение. (станция Геологическая)

(на стене карта « Полезные ископаемые России»)

Выступления учащихся-2 чел.

Железо – второй по распространенности металл (после алюминия) в земной коре. В земной коре его почти 5 %. В природе встречается в виде оксидов и сульфидов: Fe3O4 – магнитный железняк, Fe2O3 – красный железняк (гематит), бурый железняк – 2Fe2O3•3H2O, FeS2 – железный колчедан. Помимо железа в состав этих минералов входят другие элементы. Природное химически чистое железо бывает только метеоритного происхождения. Считается, что в глубинах нашей планеты находится расплавленное «ядро» Земли, состоящее из сплава железа с никелем.

По запасу железных руд наша страна занимает первое место в мире. Они залегают на Урале, в Курской, томской областях и других местах.

Мировые разведанные запасы железной руды составляют порядка 160 млрд тонн, в которых содержится около 80 млрд тонн чистого железа. По данным Геологической службы США, на долю месторождений железной руды Бразилии и России (57% руды добывается на Бакчарском железорудном месторождении) приходится по 18 % мировых запасов железа.

Распределение запасов железной руды по странам:

Редчайший каприз природы — самородное железо земного происхождения (его еще называют «теллурическим», от латинского «теллус» — земля). Такое железо получается в уникальных геологических условиях — там, где потоки расплавленной лавы, богатой оксидом железа, на пути своего извержения из земных глубин пересекали пласты каменного угля. И уголь восстанавливал железо до очень чистого металла так же, как это происходит в доменной печи.

Метеоритное железо — всегда самородное. С ним, видимо, и познакомились древние наши предки, когда на смену «бронзовому веку» пришел «век железный». Правда, «небесный металл» всегда содержит примесь никеля, поэтому он почти не поддается ковке в обычных условиях. Его следует обрабатывать, как это ни странно, только в холодном виде, а не разогретым, как обычное железо.

Начало производства железа из его руд в Древнем Египте, Индии и других странах было положено около 4 тыс. лет назад, потому что возросла потребность людей в железных предметах — мечах, плугах и других изделиях, — а метеоритного железа на Земле было гораздо меньше, чем химически связанного железа. Поэтому огромное значение имело открытие способа получения железа из железных руд. Эти открытия основывались на наблюдении за процессами горения. В тех случаях, когда вместе с топливом случайно нагревались куски железной руды, железо при соприкосновении с раскаленным древесным углем восстанавливалось. Постепенно человек перешел к сознательному воспроизведению процесса выплавки железа.

Согласно легенде, оружейники, которые не знали этого секрета и не сумели отковать из «небесного камня» меч для бухарского эмира, были безжалостно казнены. Только много столетий спустя загадка «металла с неба» была разгадана. В XVII веке оружие из никелистого железа появилось у индийского раджи. Были сабли из уникального металла у латиноамериканского героя — легендарного Боливара и у российского царя Александра I.

Однако железо, выплавленное из руд, конечно, со временем стало более доступным, чем метеоритное.

У древних египтян железо ценилось так же высоко, как золото, — недаром железные лезвия, кинжалы и бусы находили в гробницах фараонов вместе с золотыми украшениями. Скорее всего, железные предметы попадали в Египет с Ближнего Востока, где уже три тысячи лет назад начала развиваться черная металлургия. Позднее секретом получения «главного металла» овладели и в Европе.

Первые печи для выплавки железа имели два отверстия: вверху и внизу. На дно такой печи насыпали древесный уголь, а затем слой руды и снова уголь. Уголь поджигали и продували через печь воздух, раздувая пламя мехами. Углерод восстанавливал железо из руды:

Fe304 + 4 С → 4 СО↑ + 3 Fe

В древности железо получали также в «сыродутных печах» , которые на самом деле представляли собой просто прорытые в толще глины норы. Такие «воры» выходили одним Концом на склон оврага, и горение угля в печи поддерживалось ветром. Пользовались еще «волчьими ямами» — домницами (от славянского слова «дмути» — дуть), которые вырывали в земле.

Металлического железа нужно было все больше и больше. Появились доменные печи, в которых из железной руды получался чугун. Его можно использовать для разных целей (например, отливать из него массивные детали, решетки и крышки люков, делать мясорубки и сковородки). Можно получать из чугуна сталь, в которой содержание углерода гораздо меньше, чем в чугуне: Поэтому и свойства у нее другие. Сталь упруга, поддается ковке и прокатке, прочна. Из стали можно делать все — от железнодорожных рельсов до хирургического инструмента. Если железо совсем не содержит примеси углерода, его называют «мягким».

Свойства мягкого железа, чугуна и стали сильно различаются: железный шарик при ударе о металлическую плитку расплющивается, стальной — отскакивает, а чугунный раскалывается.

4. Строение железа – простого вещества.(беседа с классом).

Вид химической связи, тип кристаллической решетки.

  1. Физические и химические свойства железа. (станция Химическая)

(беседа учителя с классом, демонстрация опытов)

5.1 Физические свойства железа.

На столах учащихся: гвоздь, скрепки, магнит.

Учитель: Рассмотрим образцы железа. Докажите, что железо — типичный представитель металлов. На основе анализа справочных данных и образцов железа на столах охарактеризуйте физические свойства железа.

Для справки: плотность железа 7, 87г/см3,температура плавления -15360С

1. Цвет

2. Блеск

3. Пластичность

4. Магнитные свойства

5.Температура плавления

6. Твердость

1.

2.

3.

4.

5.

6.

Учащиеся заполняют таблицу.

(Железо – серебристо-белый металл, плотность 7,87 г/см3, температура плавления 1539оС. Обладает хорошей пластичностью, электропроводностью и магнитными свойствами.)

5.2 Химические свойства железа. ( исследовательская деятельность)

Некоторые химические свойства железа обучающимся известны, но необходимо систематизировать все свойства железа и рассмотреть эти процессы с точки зрения ОВР. Изучение некоторых химических свойств сопровождается демонстрационными опытами. (взаимодействие железа с кислородом, серой, раствором CuSO4, раствором HCl, HNO3 конц.).

На столе учителя образцы соединений железа: FeCl2, FeCL3,FeSO4, Fe3O4, Fe(OH)3

Гипотеза: если есть такие соединения железа, то их можно получить химическим путём. Предложите вещества, которые необходимо взять, для получения этих соединений железа.

Учащиеся предлагают вещества и записывают уравнения реакций на доске. Выборочно рассматриваем их с точки зрения ОВР. Учитель проводит демонстрационные опыты).

Учитель: По химическим свойствам железо является весьма активным металлом, но большинство реакций с участием железа идут при нагревании, что полностью соответствует его положению в ряду напряжений.

Раскаленное железо ярко сгорает в кислороде с образованием железной окалины

┌─ 8e−↓

3Fe + 2O2 = Fe3O4(FeO•Fe2O3) Демонстрационный опыт №1

↑ ↓

восстан. окислит.

При воздействии влаги и кислорода железо подвергается сильной коррозии и покрывается рыхлой пленкой ржавчины

┌─ 12e−↓

4Fe0 + 3O2 + 6H2O = 4Fe+3(OH)3

↑ ↓

восстан. окислит.

При слабом нагревании железо взаимодействует с хлором и серой

┌─ 6e −↓

2Fe + 3Cl2 = 2FeCl3

↑ ↓

восстан. окислит.

┌ 2e−↓

Fe + S = FeS Демонстрационный опыт №2

↑ ↓

восстан. окислит.

При высокой температуре железо взаимодействует с углеродом, кремнием, фосфором. Задание: самостоятельно запишите УХР этих реакций.

В электрохимическом ряду напряжений металлов железо располагается до водорода, следовательно вытесняет его при взаимодействии с растворами кислот (кроме азотной).

┌─2e−↓

Fe + 2НCl = FeCl2 + Н2↑ Демонстрационный опыт №3

↑ ↓

восстан. окислит.

Железо будет вытеснять металлы, стоящие в электрохимическом ряду напряжений металлов правее его из водных растворов солей.

┌─2e−↓

Fe + CuSO4 = FeSO4 + Cu Демонстрационный опыт №4

↑ ↓

восстан. окислит.

При высокой температуре (7000 – 9000 С) железо реагирует с парами воды.

┌─8e−↓

Fe + 4H2O = Fe3O4 + 4H2

пар

↑ ↓

восстан. окислит.

По мере проведения опытов приглашаю к доске учащихся написать уравнения увиденных реакций и рассмотреть их с точки зрения ОВР.

В завершение этого вопроса предлагаю учащимся сделать вывод и составить схему:

Железо дает два ряда соединений, соответствующих степени окисления +2 и +3. Степень окисления железа зависит от окислительной способности реагирующего вещества: при взаимодействии с сильными окислителями железо принимает с.о. +3, с более слабыми +2. При обычной температуре концентрированные азотная и серная кислоты с железом не взаимодействуют.

Fe

+2

S, Cu+2, HCl(разб), H2SO4(разб)

+3

Cl2, HNO3(разб)

+2, +3

O2, H2O


  1. Применение железа.

Биологическая роль железа (станция Прикладная)

6.1 Учитель: На чем основано применение веществ?

(Применение железа основано на его физических и химических свойствах.)

Что вы знаете о применении железа ? Предполагаемые ответы:

— Изготовление сердечников трансформаторов, электромоторов, электромагнитов и мембран микрофонов.

— Широко используются сплавы железа – чугун и сталь.

Однажды встретила такое высказывание о железе: «Нет в периодической системе химических элементов другого такого элемента, при участии которого было бы пролито столько крови и унесено столько жизней…»

Согласны ли вы с этими словами?

Железо, это металл не только разрушений, но и металл созидания.

Около 90% всех используемых человечеством металлов – это сплавы на основе железа. Железо выплавляется в мире очень много, приблизительно в 50 раз больше, чем алюминия, не говоря уже о прочих металлов. Сплавы на основе железа универсальны, доступны, технологичны.

Железу еще долго быть фундаментом цивилизации.

Железные сплавы – чугун и сталь – не только основа развития техники, но и важнейший материал искусства.

Так из чугуна отлит узор «кружев чугунных» Санкт-Петербурга, ограды его мостов и решетка Летнего сада.

Знаменитый булат, из которого оружейники Дамаска, а затем и нашего Златоуста делали лучшие в мире клинки – это сталь.

Из стали тульские оружейники создавали непревзойденное по качествам оружие. Из стали сделаны барельефы, светильники и опоры метро, некоторые скульптуры.

В настоящее время железо – это основа современной техники и сельскохозяйственного машиностроения, транспорта и средств связи, космических кораблей и всей современной промышленности и цивилизации.

Большинство изделий, начиная от швейной иглы и кончая космическими аппаратами, не может быть изготовлено без применения железа.

Из чугуна отливают плиты, трубы, мягкие стали и стали средней твердости, используют для изготовления кузовов легковых автомобилей, холодильников, стиральных машин, кровельного железа и т.д., а твердую сталь – для изготовления инструментов.

Чистое железо способно быстро намагничиваться и размагничиваться, поэтому его применяют для изготовления трансформаторов, электромоторов.

Основная же масса железа, на практике, используется в виде сплавов.

Хромоникелевые (нержавеющие) стали устойчивы к коррозии. Они широко применяются в изготовлении предметов домашнего обихода (вилки, ложки, ножи) и многих частей машин.

Трудно перечислить все области применения железа, чугуна и стали. Они служат основой индустриализации промышленности, развития сельского хозяйства и укрепления обороноспособности нашей Родины.

6.2 Биологическая роль железа.

. (сообщение учащегося)

Эта информация покажет важность сбалансированного питания и напомнит о здоровом образе жизни. В этом прослеживается связь химии с биологией, валеологией.

Железо входит в кровь почти всех представителей животного мира нашей планеты. Соли железа необходимы для кроветворения, обеспечивают транспортировку кислорода от легких к тканям всех органов, в том числе и мозга. Железо входит в состав гемоглобина — красного пигмента крови. У взрослого человека в крови содержится около 2,6 г железа. В процессе жизнедеятельности в организме происходит постоянный распад и синтез гемоглобина. Красные кровяные тельца образуются костном мозге, поступают в кровь и циркулируют в течение шести недель. Затем распадаются на составные части, а железо, которое содержалось в них, поступает в печень и селезенку и откладывается там про запас – « до востребования». Для восстановления железа, потерянного с распадом гемоглобина, человеку необходимо суточное поступление его в организм около 25 мг. Недостаток железа в организме приводит к заболеванию — анемии. Человек начинает быстро утомляться, возникают головные боли. Однако избыток железа в организме тоже вреден. С этим связан сидероз глаз и легких — заболевание, вызываемое отложением соединений железа в тканях этих органов. Железо содержится в белокочанной и цветной капусте, луке, моркови, горчице, свекле, яблоках, землянике. гречихе, грецких орехах, любых сухофруктах.

  1. Оценочно-рефлексивный этап. (станция Контрольная)

Учитель: Давайте проверим, как вы усвоили материал урока.

Тестирование.

Тест по теме «ЖЕЛЕЗО»

1. В ПСХЭ Д. И. Менделеева железо находится

а) в III группе главной подгруппе

б) в VIII группе главной подгруппе

в) в VIII группе побочной подгруппе

2. Электронная формула атома железа

а) 1s22s22p63s23p64s2

б) 1s22s22p63s23p63d64s2

в) 1s22s22p63s23p6

3. Наиболее характерные степени окисления железа

а) +1; +2;

б) +2; +3;

в) +3

4. Для железа характерны следующие физические свойства

а) тугоплавкий металл

б) мягкий (легко режется ножом)

в) тяжелый металл

  1. В природе железо встречается в составе соединений

а) магнетит

б) боксит

в) пирит

6. Из всех металлов по распространенности в природе железо занимает следующее место:

а) первое

б) второе

в) третье

7. Железо будет реагировать с растворами солей

а) ZnSO4

б) CuSO4

в) Hg(NO3)2

8. В реакции с раствором серной кислоты железо окисляется до

а) ионов Fe+2

б) ионов Fe+3

в) Fe+2·Fe+3

9. При обычной температура с концентрированной азотной кислотой железо

а) окисляется до ионов Fe+2

б) окисляется до ионов Fe+3

в) не взаимодействует

Ответы высвечиваются на экране. Учащиеся осуществляют взаимоконтроль, выставляют оценки. Критерии:

менее 4 правильных ответов – оценка «2»,

4–5 правильных ответов — оценка «3»,

6-8 правильных ответов — оценка «4»,

9 правильных ответов — оценка «5»

В журнал оценки выставляю по желанию учащихся.

Учитель:

А теперь давайте подведем общий итог урока.

Какие вопросы мы сегодня рассмотрели на уроке?

Какие из них вам показались наиболее трудными?

Ребята, как вы считаете, достигли ли мы поставленных нами целей?

Пригодятся ли полученные на уроке знания в жизни?

Свое отношение к уроку выразите с помощью цветовых сигналов:

красный квадрат — урок понравился, усвоил весь материал,

синий – урок не очень понравился, материал усвоил частично.

Если какие-то вопросы вызвали у вас затруднения, обратитесь к тексту учебника и выполните письменно задания после параграфа.

Учитель выставляет оценки учащимся.

Домашнее задание

§14 (до соединений железа), вопросы №5,6

Задание (по желанию)

Прочитать рассказ о железе. О каких химических превращениях идет речь? Написать соответствующие химические реакции. (Учащимся выдается распечатка)

Приключение с господином Ферром.

Уставший господин Ферр пришел домой. Не успел он стряхнуть с себя металлическую пыль, как неожиданно к нему влетел Кисли и предложил создать совместное предприятие. Зная его коварный нрав, Ферр категорически отказался вступать с ним в контакт, но тут явилась очаровательная Аква и настолько легко вошла в доверие к Ферру, притупив его бдительность и осторожность, что Ферр не заметил, как Кисли вместе с Аквой овладели ситуацией. Ферр стал покрываться бурым налетом и выпадать в осадок. Так бы и пропал наивный Ферр, если бы на помощь не пришел Верный Газ, который заставил Ферра как следует прогреться, а затем постепенно восстановил его до прежнего состояния.

ЛИТЕРАТУРА И ССЫЛКИ

  1. Л.Ю. Аликберова, Занимательная химия, Москва, АСТ-ПРЕСС, 2009 г.

  2. Л.И. Лагунова и др., Познавательные тексты по химии, Тверь, ТОИУУ, 2003 г.

  3. Электронная энциклопедия Википедия, http://www.wikipedia.org

  4. Электронная мегаэнциклопедия Кирилла и Мефодия, http://www. megabook.ru

Железо | Tervisliku toitumise informatsioon

Железо в организме человека встречается только в связанной, растворимой и нетоксичной форме. Свободное железо для человеческого организма опасно, поскольку оно быстро окисляется до труднорастворимых вредных веществ.

Железо необходимо:
  • для кроветворения, где оно используется в синтезе гемо- и миоглобина. Железо играет ключевую роль в связывании и транспорте в составе гемоглобина необходимого для жизни кислорода, в т.ч. оно участвует в доставке кислорода из легких в ткани,
  • в составе таких биомолекул, которые участвуют в синтезе АТФ (аденозинтрифосфата, играющего роль оперативного переносчика энергии в клетках) и помогают обезвреживать попавшие в организм чужеродные соединения, повышая таким образом его сопротивляемость стрессу и заболеваниям,
  • для уменьшения усталости и поддержания нормального цвета кожи.

Железо встречается как в растительной, так и в животной пище. Железо из животной пищи, например из мяса, усваивается организмом на 15–35 %, а из растительной, например из зерновых, – на 2–20 %, причем в последнем случае велика роль витамина С. Длительный дефицит доступного железа – наиболее распространенная причина анемии. Состав продукта оказывает влияние на то, как усваивается входящее в него железо. Степень усвояемости увеличивается, если в повседневном рационе присутствуют мясо и рыба, а также достаточно витамина С. Усвояемость падает, если человек ест такие продукты (например, шпинат или ревень), в которых наличествуют оксалаты, фитиновая кислота и некоторые другие органические кислоты.

Дефицит железа может возникнуть:
  • при большой кровопотере,
  • у беременных,
  • у недоношенных детей или детей с низкой массой тела,
  • у грудных детей и маленьких детей,
  • у девочек-подростков,
  • у вегетарианцев,
  • при заболевании органов пищеварения.

Чрезмерное употребление железа в течение длительного времени, главным образом в виде биоактивных добавок, может быть вредно для организма. Избыток железа приводит к глубокому оксидативному стрессу, который является причиной многих заболеваний. Избыток железа угрожает прежде всего взрослым мужчинам и женщинам в постменопаузе, и им желательно не превышать в течение долгого времени количество употребляемого железа.

Лучшим источником железа являются продукты животного происхождения, такие как печень, кровяная колбаса, яйца, постная говядина и свинина, но также и семена, изюм, хлеб, цельнозерновые продукты, греча, клубника. Продукты, богатые жирами и сахаром, обычно бедны железом.

У женщин потери железа с менструальной кровью очень различаются. Это значит, что некоторым женщинам требуется больше железа, чем его можно получить из обычной пищи. Если железо усваивается на 15 %, то 90 % потребности в железе у женщин детородного возраста покроют 15 мг железа в день.

Для поддержания баланса железа в организме в начале беременности требуется накопить около 500 мг запасов железа. Некоторым женщинам для покрытия биологической потребности в железе в последние два триместра беременности недостаточно того железа, которое поступает с пищей, и требуются железосодержащие добавки.

Рекомендуемые количества минеральных веществ по возрастным группам см. подробнее в таблице. 

Рекомендуемая суточная доза железа составляет 10–15 мг. 10 мг железа содержат, например, следующие продукты:
  • 50 г тушеной печени,
  • 55 г пшеничных отрубей,
  • 90 г чечевицы,
  • 125 г кровяной колбасы,
  • 400 г тушеной говядины.

Если питаться разнообразно, в соответствии с теми количествами продуктов, которые рекомендованы в пирамиде питания, с получением достаточного количества железа проблем не возникает.

Железо. Химия железа и его соединений

 

Положение железа в периодической системе химических элементов
Электронное строение железа
Физические свойства
Нахождение в природе
Способы получения
Качественные реакции
Химические свойства
1. Взаимодействие с простыми веществами
1.1. Взаимодействие с галогенами
1.2. Взаимодействие с серой
1.3. Взаимодействие с фосфором
1.4. Взаимодействие с азотом
1.5. Взаимодействие с углеродом
1.6. Горение
2. Взаимодействие со сложными веществами
2.1. Взаимодействие с водой
2.2. Взаимодействие с минеральными кислотами
2.3. Взаимодействие с серной кислотой
2.4. Взаимодействие с азотной кислотой
2.5. Взаимодействие с сильными окислителями
2.6. Взаимодействие с оксидами и солями

Оксид железа (II)
 Способы получения
 Химические свойства
1. Взаимодействие с кислотными оксидами
2. Взаимодействие с кислотами
3. Взаимодействие с водой
4. Взаимодействие с окислителями
5. Взаимодействие с кислотами
6. Взаимодействие с восстановителями

Оксид железа (III)
 Способы получения
 Химические свойства
1. Взаимодействие с кислотными оксидами и кислотами 
2. Взаимодействие с щелочами и основными оксидами
3. Взаимодействие с водой
4. Взаимодействие с окислителями
5. Окислительные свойства оксида железа (III)

6. Взаимодействие с солями более летучих кислот

Оксид железа (II, III)
 Способы получения
 Химические свойства
1. Взаимодействие с кислотными оксидами и кислотами 
2. Взаимодействие с сильными кислотами-окислителями
3. Взаимодействие с водой
4. Взаимодействие с окислителями
5. Окислительные свойства оксида железа (II, III)

Гидроксид железа (II)
 Способы получения
 Химические свойства
1. Взаимодействие с кислотами
2. Взаимодействие с кислотными оксидами
3. Восстановительные свойства 
4. Разложение при нагревании

Гидроксид железа (III)
 Способы получения
 Химические свойства
1. Взаимодействие с кислотами
2. Взаимодействие с кислотными оксидами
3. Взаимодействие с щелочами 
4. Разложение при нагревании

Соли железа

 

 

Железо

Положение в периодической системе химических элементов

Элемент железо расположен в побочной подгруппе VIII группы  (или в 8 группе в современной форме ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение атома железа 

Электронная конфигурация  железа в основном состоянии:

+26Fe 1s22s22p63s23p64s23d6

Железо проявляет ярко выраженные магнитные свойства.

Физические свойства 

Железо – металл серебристо-белого цвета, с высокой химической активностью и высокой ковкостью. Обладает высокой тепло- и электропроводностью.

(изображение с портала vchemraznica.ru)

Температура плавления 1538оС, температура кипения 2861оС.

Нахождение в природе

Железо довольно распространено в земной коре (порядка 4% массы земной коры). По распространенности на Земле железо занимает 4-ое место среди всех элементов и 2-ое место среди металлов. Содержание в земной коре  — около 8%.

В природе железо в основном встречается в виде соединений:

Красный железняк Fe2O3 (гематит).

(изображение с портала karatto.ru)

Магнитный железняк Fe3O4 или FeO·Fe2O3 (магнетит).

(изображение с портала emchi-med.ru)

В природе также широко распространены сульфиды железа, например,  пирит FeS2.

(изображение с портала livemaster.ru)

Встречаются и другие минералы, содержащие железо.

Способы получения 

Железо в промышленности получают из железной руды, гематита Fe2O3  или магнетита (Fe3O4или FeO·Fe2O3).

1. Один из основных способов производства железа – доменный процесс. Доменный процесс основан на восстановлении железа из оксида углеродом в доменной печи.

В печь загружают руду, кокс и флюсы.

Шихта  смесь исходных материалов, а в некоторых случаях и топлива в определённой пропорции, которую обрабатывают в печи.

Каменноугольный кокс  это твёрдый пористый продукт серого цвета, получаемый путем коксования каменного угля при температурах 950—1100 °С без доступа воздуха. Содержит 96—98 % углерода.

Флюсы  это неорганические вещества, которые добавляют к руде при выплавке металлов, чтобы снизить температуру плавления и легче отделить металл от пустой породы.

Шлак  расплав (а после затвердевания стекловидная масса), покрывающий поверхность жидкого металла. Шлак состоит из всплывших продуктов пустой породы с флюсами и предохраняет металл от вредного воздействия газовой среды печи, удаляет примеси.

В печи кокс окисляется до оксида углерода (II):

2C   +  O  →  2CO

Затем нагретый угарный газ восстанавливает оксид железа (III):

3CO   +  Fe2O3    →   3CO2    +   2Fe

Процесс получения железа – многоэтапный и зависит от температуры.

Наверху, где температура обычно находится в диапазоне между 200 °C и 700 °C, протекает следующая реакция:

3Fe2O3    +   CO   →    2Fe3O4      +    CO2

Ниже в печи, при температурах приблизительно 850 °C, протекает восстановление смешанного оксида железа (II, III)  до оксида железа (II):

Fe3O4   +   CO   →   3FeO   +   CO2

Встречные потоки газов разогревают шихту, и происходит разложение известняка:

CaCO3    →    CaO    +       CO2

Оксид железа (II) опускается в область с более высоких температур (до 1200oC), где протекает следующая реакция:

FeO   +   CO   →   Fe   +   CO2

Углекислый газ поднимается вверх и реагирует с коксом, образуя угарный газ:

CO2   +    C   →    2CO

(изображение с портала 900igr.net)

2. Также железо получают прямым восстановлением из оксида водородом:

Fe2O3    +   3H2   →    2Fe      +    3H2O

При этом получается более чистое железо, т.к.  получаемое железо не загрязнено серой и фосфором, которые являются примесями в каменном угле.

3. Еще один способ получения железа в промышленности – электролиз растворов солей железа.

Качественные реакции

 

Качественные реакции на ионы железа +2.

– взаимодействие солей железа (II) с щелочами. При этом образуется серо-зеленый студенистый осадок гидроксида железа (II).

Например, хлорид железа (II) реагирует с гидроксидом натрия:

 

2NaOH  +   FeCl2    →    Fe(OH)2   + 2NaCl

 

 

Видеоопыт взаимодействия раствора сульфата железа (II) с раствором гидроксида натрия (качественная реакция на ионы железа (II)) можно посмотреть здесь.

Гидроксид железа (II) на воздухе буреет, так как окисляется до гидроксида железа (III):

4Fe(OH)2   +    O2   +   2H2O    →   4Fe(OH)3

– ионы железа +2 окрашивают раствор в светлый желто-зеленый цвет.

 

– взаимодействие с красной кровяной солью K3[Fe(CN)6] – также качественная реакция на ионы железа +2. При этом образуется синий осадок «турнбулева синь».

 

 

Видеоопыт взаимодействия раствора хлорида железа (II) с раствором гексацианоферрата (III) калия (качественная реакция на ионы железа (II)) можно посмотреть здесь.

 

Качественные реакции на ионы железа +3

 

– взаимодействие солей железа (III) с щелочами. При этом образуется бурый осадок гидроксида железа (III).

 

   

 

Например, хлорид железа (III) реагирует с гидроксидом натрия:

 

3NaOH  +   FeCl3    →    Fe(OH)3   + 3NaCl

 

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором гидроксида натрия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

– ионы железа +3 окрашивают раствор в светлый желто-оранжевый цвет.

 

 

– взаимодействие с желтой кровяной солью K4[Fe(CN)6] ионы железа +3. При этом образуется синий осадок «берлинская лазурь».

 

 

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором гексацианоферрата (II) калия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

В последнее время получены данные, которые свидетельствуют, что молекулы берлинской лазури идентичны по строению молекулам турнбулевой сини. Состав молекул обоих этих веществ можно выразить формулой Fe4[Fe2(CN)6]3.

–  при взаимодействии солей железа (III) с роданидами раствор окрашивается в кроваво-красный цвет.

 

Например, хлорид железа (III) взаимодействует с роданидом натрия:

FeCl3   +    3NaCNS   →   Fe(CNS)3   +  3NaCl

 

 

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором роданида калия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

 

Химические свойства

 

1. При обычных условиях железо малоактивно, но при нагревании, в особенности в мелкораздробленном состоянии, оно становится активным и реагирует почти со всеми неметаллами.

1.1. Железо реагирует с галогенами с образованием галогенидов. При этом активные неметаллы (фтор, хлор и бром) окисляют железо до степени окисления +3:

2Fe  +  3Cl2  → 2FeCl3

Менее активный йод окисляет железо до степени окисления +2:

Fe  +  I2  →  FeI2

1.2. Железо реагирует с серой с образованием сульфида железа (II):

Fe  +  S   →  FeS

1.3. Железо реагирует с фосфором. При этом образуется бинарное соединения – фосфид железа:

Fe  +  P   →   FeP

1.4. С азотом железо реагирует при нагревании с образованием нитрида:

6Fe  +  N2  →  2Fe3N

1.5. Железо реагирует с углеродом и кремнием с образованием карбида и силицида:

3Fe  +  C   →   Fe3C

1.6. При взаимодействии с кислородом железо образует окалину – двойной оксид железа (II, III):

3Fe  +  2O2  →  Fe3O4

При пропускании кислорода через расплавленное железо возможно образование оксида железа (II):

2Fe  +  O2  →  2FeO

2. Железо взаимодействует со сложными веществами.

2.1. При обычных условиях железо с водой практически не реагирует. Раскаленное железо может вступать в реакцию при температуре 700-900оС с водяным паром:

3Fe0 + 4H2+O  →  Fe+33O4 + 4H20

В воде в присутствии кислорода или во влажном воздухе железо медленно окисляется (корродирует):

4Fe  +  3O2   +   6H2O    →   4Fe(OH)3

2.2. Железо взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой). При этом образуются соль железа со степенью окисления +2 и водород.

Например, железо бурно реагирует с соляной кислотой:

Fe + 2HCl   →   FeCl2  +  H2

2.3. При обычных условиях железо не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат железа (III) и вода:

2Fe + 6H2SO4(конц.)   →  Fe2(SO4)3 + 3SO2 + 6H2O

2.4. Железо не реагирует при обычных условиях с концентрированной азотной кислотой также из-за пассивации. При нагревании реакция идет с образованием нитрата железа (III), оксида азота (IV) и воды:

Fe  +  6HNO3(конц.)   →   Fe(NO3)3  +  3NO2↑   +  3H2O

С разбавленной азотной кислотой железо реагирует с образованием оксида азота (II):

Fe   +  4HNO3(разб.гор.)  →   Fe(NO3)3  +  NO  +  2H2O

При взаимодействии железа с очень разбавленной азотной кислотой образуется нитрат аммония:

8Fe  +  30HNO3(оч. разб.)  →  8Fe(NO3)3   +   3NH4NO3   +  9H2O

2.5. Железо может реагировать с щелочными растворами или расплавами сильных окислителей. При этом железо окисляет до степени окисления +6, образуя соль (феррат).

Например, при взаимодействии железа с расплавом нитрата калия в присутствии гидроксида калия железо окисляется до феррата калия, а азот восстанавливается либо до нитрита калия, либо до аммиака:

Fe  +  2KOH  +  3KNO3  →   3KNO2   +  K2FeO4  +  H2O

2.6. Железо восстанавливает менее активные металлы из оксидов и солей.

Например, железо вытесняет медь из сульфата меди (II). Реакция экзотермическая:

Fe  +  CuSO4  →   FeSO4  +  Cu

Еще пример: простое вещество железо восстанавливает железо до степени окисления +2  при взаимодействии с соединениями железа +3:

2Fe(NO3)3   +  Fe  → 3Fe(NO3)2  

2FeCl3  +  Fe  → 3FeCl2

Fe2(SO4)3   +  Fe  →   3FeSO4

 

Оксид железа (II)

 

Оксид железа (II) – это твердое, нерастворимое в воде вещество черного цвета.

 

Способы получения

Оксид железа (II) можно получить различными методами:

1. Частичным восстановлением оксида железа (III).

Например,  частичным восстановлением оксида железа (III) водородом:

 Fe2O3   +   H2   →   2FeO   +  H2O

Или частичным восстановлением оксида железа (III) угарным газом:

 Fe2O3   +   CO   →   2FeO   +  CO2

Еще один пример: восстановление оксида железа (III) железом:

 Fe2O3   +   Fe   →   3FeO

2. Разложение гидроксида железа (II) при нагревании:

Fe(OH)2   →   FeO   +  H2O

Химические свойства

Оксид железа (II) — типичный основный оксид.

1. При взаимодействии оксида железа (II) с кислотными оксидами образуются соли.

Например, оксид железа (II) взаимодействует с оксидом серы (VI):

FeO  +  SO3   →   FeSO4

2. Оксид железа (II) взаимодействует с растворимыми кислотами. При этом также образуются соответствующие соли.

Например, оксид железа (II) взаимодействует с соляной кислотой:

FeO  +  2HCl  → FeCl+  H2O

3. Оксид железа (II) не взаимодействует с водой.

4. Оксид железа (II) малоустойчив, и легко окисляется до соединений железа (III).

Например, при взаимодействии с концентрированной азотной кислотой образуются нитрат железа (III), оксид азота (IV) и вода

FeO  +  4HNO3(конц.)   →   NO2  +  Fe(NO3)3  +  2H2O

При взаимодействии с разбавленной азотной кислотой образуется оксид азота (II). Реакция идет при нагревании:

3FeO  +  10HNO3(разб.)   →   3Fe(NO3)3  +  NO  +  5H2O

5. Оксид железа (II) проявляет слабые окислительные свойства.

Например, оксид железа (II) реагирует с угарным газом при нагревании:

FeO   +   CO  →   Fe   +  CO2

 

Оксид железа (III)

 

Оксид железа (III) – это твердое, нерастворимое в воде вещество красно-коричневого цвета.

 

 

Способы получения

Оксид железа (III) можно получить различными методами:

1. Окисление оксида железа (II) кислородом.

 4FeO   +   O2   →   2Fe2O3

2. Разложение гидроксида железа (III) при нагревании:

2Fe(OH)3   →   Fe2O3   +  3H2O

 

Химические свойства

Оксид железа (III) – амфотерный.

1. При взаимодействии оксида железа (III) с кислотными оксидами и кислотами образуются соли.

Например, оксид железа (III) взаимодействует с азотной кислотой:

Fe2O3  +  6HNO3   →  2Fe(NO3)3  +  3H2O

2. Оксид железа (III) взаимодействует с щелочами и основными оксидами. Реакция протекает в расплаве, при этом образуется соответствующая соль (феррит).

Например, оксид железа (III) взаимодействует с гидроксидом натрия:

Fe2O3  +  2NaOH   →   2NaFeO2  +  H2O

3. Оксид железа (III) не взаимодействует с водой.

4. Оксид железа (III) окисляется сильными окислителями до соединений железа (VI).

Например, хлорат калия в щелочной среде окисляет оксид железа (III) до феррата

Fe2O3  +  KClO3  +  4KOH   →  2K2FeO4  +  KCl  +  2H2O

Нитраты и нитриты в щелочной среде также окисляют оксид железа (III):

Fe2O3  +  3KNO3  +  4KOH   →  2K2FeO4  +  3KNO2  +  2H2O

5. Оксид железа (III) проявляет окислительные свойства.

Например, оксид железа (III) реагирует с угарным газом при нагревании. При этом возможно восстановление как до чистого железа, так и до оксида железа (II) или железной окалины:

Fe2O3  +  3СO  →  2Fe  +  3CO2

Также оксид железа (III) восстанавливается водородом:

Fe2O3  +  3Н2  →  2Fe  +  3H2O

Железом можно восстановить оксид железа только до оксида железа (II):

Fe2O3  +  Fe   →  3FeO 

Оксид железа (III) реагирует с более активными металлами.

Например, с алюминием (алюмотермия):

Fe2O3  +  2Al  →  2Fe  +  Al2O3

Оксид железа (III) реагирует также с некоторыми другими сильными восстановителями.

Например, с гидридом натрия:

Fe2O3  +  3NaH  →  3NaOH  +  2Fe

6. Оксид железа (III) – твердый, нелетучий  и амфотерный. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например, из карбоната натрия:

Fe2O3  +  Na2CO3 → 2NaFeO+  CO2

 

Оксид железа (II, III)

Оксид железа (II, III) (железная окалина, магнетит) – это твердое, нерастворимое в воде вещество черного цвета.

 

Фото с сайта wikipedia.ru

Способы получения

Оксид железа (II, III) можно получить различными методами:

1. Горение железа на воздухе:

3Fe  +  2O2  →  Fe3O4

2. Частичное восстановление оксида железа (III) водородом или угарным газом:

3Fe2O3  +  Н2  →  2Fe3O4  +  H2O

3. При высокой температуре раскаленное железо реагирует с водой, образуя двойной оксид железа (II, III):

3Fe  +  4H2O(пар)  → Fe3O4  +  4H2

 

Химические свойства

Свойства оксида железа (II, III) определяются свойствами двух оксидов, из которых он состоит: основного оксида железа (II) и амфотерного оксида железа (III).

1. При взаимодействии оксида железа (II, III) с кислотными оксидами и кислотами образуются соли железа (II) и железа (III).

Например, оксид железа (II, III) взаимодействует с соляной кислотой. При это образуются две соли – хлорид железа (II) и хлорид железа (III):

Fe3O4  +  8HCl  →   FeCl2  +  2FeCl3  +  4H2O

Еще пример: оксид железа (II, III) взаимодействует с разбавленной серной кислотой.

Fe3O4   +  4H2SO4(разб.)  →  Fe2(SO4)3  +  FeSO4  +  4Н2О

2. Оксид железа (II, III) взаимодействует с сильными кислотами-окислителями (серной-концентрированной и азотной). 

Например, железная окалина окисляется концентрированной азотной кислотой:

Fe3O4  +  10HNO3(конц.) →  NO2↑  +  3Fe(NO3)3  +  5H2O

Разбавленной азотной кислотой окалина окисляется при нагревании:

 3Fe3O4   +  28HNO3(разб.) →  9Fe(NO3)3   +   NO   +  14H2O

Также оксид железа (II, III) окисляется концентрированной серной кислотой:

2Fe3O4   +  10H2SO4(конц.)  →  3Fe2(SO4)3  +  SO2   +   10H2O

Также окалина окисляется кислородом воздуха:

4Fe3O4  +  O2(воздух)  →  6Fe2O3

3. Оксид железа (II, III) не взаимодействует с водой.

4. Оксид железа (II, III) окисляется сильными окислителями до соединений железа (VI), как и прочие оксиды железа (см. выше).

5. Железная окалина проявляет окислительные свойства.

Например, оксид железа (II, III) реагирует с угарным газом при нагревании. При этом возможно восстановление как до чистого железа, так и до оксида железа (II):

Fe3O4  +  4CO  →  3Fe  +  4CO2

Также железная окалина восстанавливается водородом:

Fe3O4   +  4H2  →  3Fe   +   4H2O

Оксид железа (II, III) реагирует с более активными металлами.

Например, с алюминием (алюмотермия):

3Fe3O4  +  8Al  →  9Fe  +  4Al2O3

Оксид железа (II, III) реагирует также с некоторыми другими сильными восстановителями (йодидами и сульфидами).

Например, с йодоводородом:

Fe3O4  +  8HI  →  3FeI2  +  I2  +  4H2O

 

Гидроксид железа (II)
Способы получения

 

1. Гидроксид железа (II) можно получить действием раствора аммиака на соли железа (II).

Например, хлорид железа (II) реагирует с водным раствором аммиака с образованием гидроксида железа (II) и хлорида аммония:

FeCl2   +   2NH3   +   2H2O  →  Fe(OH)2   +   2NH4Cl

2. Гидроксид железа (II) можно получить действием щелочи на соли железа (II).

Например, хлорид железа (II) реагирует с гидроксидом калия с образованием гидроксида железа (II) и хлорида калия:

FeCl2 + 2KOH  →  Fe(OH)2↓ + 2KCl

Химические свойства

1. Гидроксид железа (II) проявляется основные свойства, а именно реагирует с кислотами. При этом образуются соответствующие соли.

Например, гидроксид железа (II) взаимодействует с соляной кислотой с образованием хлорида железа (II):

Fe(OH)2  +  2HCl →  FeCl2  +  2H2O

Fe(OH)2  +  H2SO4  → FeSO4  +  2H2O

Fe(OH)2  +  2HBr →  FeBr2  +  2H2O

 

2. Гидроксид железа (II) взаимодействует с кислотными оксидами сильных кислот.

Например, гидроксид железа (II) взаимодействует с оксидом серы (VI) с образованием сульфата железа (II):

Fe(OH)2 + SO3  →   FeSO4 + 2H2O

 

3. Гидроксид железа (II) проявляет сильные восстановительные свойства, и реагирует с окислителями. При этом образуются соединения железа (III).

Например, гидроксид железа (II) взаимодействует с кислородом в присутствии воды:

4Fe(OH)2  +  O2  +  2H2O  →   4Fe(OH)3

Гидроксид железа (II) взаимодействует с пероксидом водорода:

2Fe(OH)2   +  H2O  →  2Fe(OH)3

При растворении Fe(OH)2  в азотной или концентрированной серной кислотах образуются соли железа (III):

2Fe(OH)2  +  4H2SO4(конц.)  → Fe2(SO4)3  +  SO2  +  6H2O

 

4. Гидроксид железа (II) разлагается при нагревании:

Fe(OH)2  →  FeO  +  H2O

 

Гидроксид железа (III)

 

Способы получения

 

1. Гидроксид железа (III) можно получить действием раствора аммиака на соли железа (III).

Например, хлорид железа (III) реагирует с водным раствором аммиака с образованием гидроксида железа (III) и хлорида аммония:

FeCl3 + 3NH3 + 3H2O = Fe(OH)3 + 3NH4Cl

 

2. Окислением гидроксида железа (II) кислородом или пероксидом водорода:

4Fe(OH)2  +  O2  +  2H2O  →   4Fe(OH)3

2Fe(OH)2   +  H2O  →  2Fe(OH)3

 

3. Гидроксид железа (III) можно получить действием щелочи на раствор соли железа (III).

Например, хлорид железа (III) реагирует с раствором гидроксида калия с образованием гидроксида железа (III) и хлорида калия:

FeCl3 + 3KOH    →   Fe(OH)3↓ + 3KCl

Видеоопыт получения гидроксида железа (III) взаимодействием хлорида железа (III) и гидроксида калия можно посмотреть здесь.

 

4. Также гидроксид железа (III) образуется при взаимодействии растворимых солей железа (III) с растворами карбонатов и сульфитов. Карбонаты и сульфиты железа (III) необратимо гидролизуются в водном растворе.

Например: бромид железа (III) реагирует с карбонатом натрия. При этом выпадает осадок гидроксида железа (III), выделяется углекислый газ и образуется бромид натрия:

2FeBr3  +  3Na2CO3  + 3H2O  =  2Fe(OH)3↓  +  CO2↑ +  6NaBr

Но есть исключение! Взаимодействие солей железа (III) с сульфитами в ЕГЭ по химии — окислительно-восстановительная реакция. Соединения железа (III) окисляют сульфиты, а также сульфиды и иодиды.

Взаимодействие хлорида железа (III) с сульфитом, например, калия — очень интересная реакция. Во-первых, в некоторых источниках указывается, что в ней таки может протекать необратимый гидролиз. Но для ЕГЭ лучше считать, что при этом протекает ОВР. Во-вторых, ОВР можно записать в разных видах:

2FeCl3  +  Na2SO3  + H2O =  2FeCl2  +  Na2SO4  + 2HCl

 

Также допустима такая запись:

2FeCl3  +  Na2SO3 + H2O =  FeSO4  +  2NaCl  + FeCl2 + 2HCl

 

Химические свойства

 

1. Гидроксид железа (III) проявляет слабовыраженные амфотерные свойства, с преобладанием основных. Как основание, гидроксид железа (III) реагирует с растворимыми кислотами.

Например, гидроксид железа (III) взаимодействует с азотной кислотой с образованием нитрата железа (III):

Fe(OH)3 + 3HNO3 → Fe(NO3)3 + 3H2O

Fe(OH)3  +  3HCl →  FeCl3  +  3H2O

2Fe(OH)3  +  3H2SO4  → Fe2(SO4)3  +  6H2O

Fe(OH)3  +  3HBr →  FeBr3  +  3H2O

 

2. Гидроксид железа (III) взаимодействует с кислотными оксидами сильных кислот.

Например, гидроксид железа (III) взаимодействует с оксидом серы (VI) с образованием сульфата железа (III):

2Fe(OH)3 + 3SO3 → Fe2(SO4)3 + 3H2O

 

3. Гидроксид железа (III) взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются солиферриты, а в растворе реакция практически не идет. При этом гидроксид железа (III) проявляет кислотные свойства.

Например, гидроксид железа (III) взаимодействует с гидроксидом калия в расплаве с образованием феррита калия и воды:

KOH  +  Fe(OH)3  → KFeO+ 2H2O

 

4. Гидроксид железа (III) разлагается при нагревании:

2Fe(OH)3 → Fe2O3 + 3H2O

Видеоопыт взаимодействия гидроксида железа (III) с соляной кислотой можно посмотреть здесь.

 

Соли железа

 

Нитраты железа

 

Нитрат железа (II) при нагревании разлагается на оксид железа (III), оксид азота (IV)  и кислород:

4Fe(NO3)2 → 2Fe2O3  +  8NO2  +   O2

Нитрат железа (III) при нагревании разлагается также на оксид железа (III), оксид азота (IV)  и кислород:

4Fe(NO3)3 → 2Fe2O3  +  12NO2  +   3O2

 

Гидролиз солей железа

Растворимые соли железа, образованные кислотными остатками сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. частично:

I ступень: Fe3+ +  H2O  ↔  FeOH2+ + H+

II ступень: FeOH2+ + H2O ↔ Fe(OH)2+ + H+

III ступень: Fe(OH)2+ + H2O ↔ Fe(OH)+ H+

Однако  сульфиты и карбонаты железа (III) и их кислые соли гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Fe2(SO4)3  +  6NaHSO3  → 2Fe(OH)3  +  6SO2  +  3Na2SO4

2FeBr3  +  3Na2CO3  + 3H2O →  2Fe(OH)3↓  +  CO2↑ +  6NaBr

2Fe(NO3)3  +  3Na2CO3  +  3H2O →  2Fe(OH)3↓  +  6NaNO3  +  3CO2

2FeCl3  +  3Na2CO3  +  3H2O → 2Fe(OH)3↓  +  6NaCl  +  3CO2

Fe2(SO4)3  +  3K2CO3  +  3H2O →  2Fe(OH)3↓  +  3CO2↑  +  3K2SO4

При взаимодействии соединений железа (III) с сульфидами протекает ОВР:

2FeCl3  +  3Na2S  →  2FeS  +  S  +  6NaCl

Более подробно про гидролиз можно прочитать в соответствующей статье.

 

Окислительные свойства железа (III)

Соли железа (III) под проявляют довольно сильные окислительные свойств. Так, при взаимодействии соединений железа (III) с сульфидами протекает окислительно-восстановительная реакция.

Например: хлорид железа (III) взаимодействует с сульфидом натрия. При этом образуется сера, хлорид натрия и либо черный осадок сульфида железа (II) (в избытке сульфида натрия), либо хлорид железа (II) (в избытке хлорида железа (III)):

2FeCl3  +  3Na2S  →   2FeS  +  S  +  6NaCl

2FeCl3  +  H2S  →   2FeCl2  +  S   +  2HCl

По такому же принципу соли железа (III) реагируют с сероводородом:

2FeCl3  +  H2S  →   2FeCl2  +  S   +  2HCl

Соли железа (III) также вступают в окислительно-восстановительные реакции с йодидами.

Например, хлорид железа (III) взаимодействует с йодидом калия. При этом образуются хлорид железа (II), молекулярный йод и хлорид калия:

2FeCl3  +  2KI    →   2FeCl2  +  I2   +  2KCl

Интерес представляют также реакции солей железа (III) с металлами. Мы знаем, что более активные металлы вытесняют из солей менее активные металлы. Иначе говоря, металлы, которые стоят в электрохимическом ряду левее, могут взаимодействовать с солями металлов, которые расположены в этом ряду правее. Исходя из этого правила, соли железа могут взаимодействовать только с металлами, которые расположены до железа. И они взаимодействуют.

Однако, соли железа со степенью окисления +3 в этом ряду являются небольшим исключением. Ведь для железа характерны две степени окисления: +2 и +3. И железо со степенью окисления +3 является более сильным окислителем. Таким образом, условно говоря, железо со степенью окисления +3 расположено в ряду активности после меди. И соли железа (III) могут реагировать еще и с металлами, которые расположены правее железа! Но до меди, включительно. Вот такой парадокс.

И еще один момент. Соединения железа (III) с этими металлами реагировать будут, а вот соединения железа (II) с ними реагировать не будут. Таким образом, металлы, расположенные в ряду активности между железом и медью (включая медь) при взаимодействии с солями железа (III) восстанавливают железо до степени окисления +2. А вот металлы, расположенные до железа в ряду активности, могут восстановить железо и до простого вещества.

Например, хлорид железа (III) взаимодействует с медью. При этом образуются хлорид железа (II) и хлорид меди (II):

2FeCl3   +  Cu  →   2FeCl2   +   CuCl2

А вот реакция нитрата железа (III) с цинком протекает уже по привычному механизму. И железо восстанавливается до простого вещества:

2Fe(NO3)3   +   3Zn  →  2Fe  +   3Zn(NO3)2

Урок №54. Железо. Нахождение в природе. Свойства железа

Железо – химический элемент

Дополнительно в учебнике «Фоксфорд» 

1. Положение железа в периодической таблице химических элементов и строение его атома

Железо — это d- элемент VIII группы; порядковый номер – 26; атомная масса Ar(Fe) = 56; состав атома: 26-протонов; 30 – нейтронов; 26 – электронов.

Схема строения атома:

Электронная формула: 1s22s22p63s23p63d64s2

Металл средней активности, восстановитель:

Fe0-2e→Fe+2, окисляется восстановитель

Fe0-3e→Fe+3, окисляется восстановитель

Основные степени окисления: +2, +3

 

2. Распространённость железа

Железо – один из самых распространенных элементов в природе. В земной коре его массовая доля составляет 5,1%, по этому показателю оно уступает только кислороду, кремнию и алюминию. Много железа находится и в небесных телах, что установлено по данным спектрального анализа. В образцах лунного грунта, которые доставила автоматическая станция “Луна”, обнаружено железо в неокисленном состоянии.

Железные руды довольно широко распространены на Земле. Названия гор на Урале говорят сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят соединения железа.

Железо входит в состав большинства горных пород. Для получения железа используют железные руды с содержанием железа 30-70% и более.

Основными железными рудами являются:

магнетит (магнитный железняк) – Fe3O4 содержит 72% железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии:


гематит (железный блеск, кровавик)– Fe2O3содержит до 65% железа, такие месторождения встречаются в Криворожском районе:

лимонит (бурый железняк) – Fe2O3*nH2O содержит до 60% железа, месторождения встречаются в Крыму:

пирит (серный колчедан, железный колчедан, кошачье золото) – FeS2 содержит примерно 47% железа, месторождения встречаются на Урале.

3. Роль железа в жизни человека и растений

Биохимики открыли важную роль железа в жизни растений, животных и человека. Входя в состав чрезвычайно сложно построенного органического соединения, называемого гемоглобином, железо обусловливает красную окраску этого вещества, от которого в свою очередь, зависит цвет крови человека и животных. В организме взрослого человека содержится 3 г чистого железа, 75% которого входит в состав гемоглобина. Основная роль гемоглобина – перенос кислорода из легких к тканям, а в обратном направлении – CO2.

Железо необходимо и растениям. Оно входит в состав цитоплазмы, участвует в процессе фотосинтеза. Растения, выращенные на субстрате, не содержащем железа, имеют белые листья. Маленькая добавка железа к субстрату – и они приобретают зеленый цвет. Больше того, стоит белый лист смазать раствором соли, содержащей железо, и вскоре смазанное место зеленеет.

Так от одной и той же причины – наличия железа в соках и тканях – весело зеленеют листья растений и ярко румянятся щеки человека.

4. Физические свойства железа.

Железо – это серебристо-белый металл с температурой плавления 1539оС. Очень пластичный, поэтому легко обрабатывается, куется, прокатывается, штампуется. Железо обладает способностью намагничиваться и размагничиваться, поэтому применяется в качестве сердечников электромагнитов в различных электрических машинах и аппаратах. Ему можно придать большую прочность и твердость методами термического и механического воздействия, например, с помощью закалки и прокатки.

Различают химически чистое и технически чистое железо. Технически чистое железо, по сути, представляет собой низкоуглеродистую сталь, оно содержит 0,02 -0,04% углерода, а кислорода, серы, азота и фосфора – еще меньше. Химически чистое железо содержит менее 0,01% примесей. Химически чистое железо – серебристо-серый, блестящий, по внешнему виду очень похожий на платину металл. Химически чистое железо устойчиво к коррозии  и хорошо сопротивляется действию кислот. Однако ничтожные доли примесей лишают его этих драгоценный свойств.

5. Получение железа

Восстановлением из оксидов углём или оксидом углерода (II), а также водородом:

FeO + C = Fe + CO

Fe2O3 + 3CO = 2Fe + 3CO2

Fe2O3 + 3H2 = 2Fe + 3H2O

 Опыт «Получение железа алюминотермией»

6. Химические свойства железа

Как элемент побочной подгруппы железо может проявлять несколько степеней окисления. Мы рассмотрим только соеди­нения, в которых железо проявляет степени окисления +2 и +3. Таким образом, можно говорить, что у железа имеется два ряда соединений, в которых оно двух- и трехвалентно.

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O2 + 6H2 O = 4Fe(OH)3

2) Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II,III) — вещество чёрного цвета:

3Fe + 2O2 = Fe3O4

При пропускании кислорода через расплавленное железо возможно образование оксида железа (II):

2Fe+O2=2FeO

C  кислородом во влажном воздухе образуется Fe2O3*nH2O

 Опыт «Взаимодействие железа с кислородом»

3)  При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H2t˚C→  Fe3O4 + 4H2­

4)     Железо реагирует с неметаллами при нагревании:

Железо реагирует с галогенами с образованием галогенидов. При этом активные неметаллы (фтор, хлор и бром) окисляют железо до степени окисления +3:

2Fe + 3Cl2 =t= 2FeCl3

Менее активный йод окисляет железо до степени окисления +2:

Fe + I2 =t= FeI2

Железо реагирует с серой с образованием сульфида железа (II):

Fe + S =t= FeS

Железо реагирует с фосфором. При этом образуется бинарное соединения – фосфид железа:

Fe + P =t= FeP

С азотом железо реагирует при нагревании с образованием нитрида:

6Fe + N=t= 2Fe3N

Железо реагирует с углеродом и кремнием с образованием карбида и силицида:

3Fe + C =t= Fe3C

5)     Железо легко растворяется в соляной и разбавленной серной кислотах при обычных условиях:

Fe + 2HCl = FeCl2 + H2­

Fe + H2SO4(разб.) = FeSO4 + H2­

6) В концентрированных кислотах – окислителях железо растворяется только при нагревании

При обычных условиях железо не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат железа (III) и вода:

2Fe + 6H2SO4(конц.) =t= Fe2(SO4)3 + 3SO2 + 6H2O

Железо не реагирует при обычных условиях с концентрированной азотной кислотой также из-за пассивации. При нагревании реакция идет с образованием нитрата железа (III), оксида азота (IV) и воды:

Fe+6HNO3(конц.) =t= Fe(NO3)3+3NO2+3H2O  

С разбавленной азотной кислотой железо реагирует с образованием оксида азота (II):

Fe+4HNO3(разб.гор.) =t= Fe(NO3)3+NO+2H2O

При взаимодействии железа с очень разбавленной азотной кислотой образуется нитрат аммония:

8Fe+30HNO3(очразб.)  =t= 8Fe(NO3)3+3NH4NO3+9H2O

 Опыт «Взаимодействие железа с концентрированными кислотами»

7)     Железо вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.

Fe + CuSO4 = FeSO4 + Cu

8) Железо может реагировать с щелочными растворами или расплавами сильных окислителей. При этом железо окисляет до степени окисления +6, образуя соль (феррат)

При взаимодействии железа с расплавом нитрата калия в присутствии гидроксида калия железо окисляется до феррата калия, а азот восстанавливается либо до нитрита калия, либо до аммиака:

Fe+2KOH+3KNO3=3KNO2+K2FeO4+H2O

9) Простое вещество железо восстанавливает железо до степени окисления +2 при взаимодействии с соединениями железа +3:

2Fe(NO3)3+Fe=3Fe(NO3)2  

2FeCl3+Fe=3FeCl2

Fe2(SO4)3+Fe=3FeSO4

10) Качественные реакции на

Железо (II)

Железо (III)

7. Применение железа.

Основная часть получаемого в мире железа используется для получения чугуна и стали — сплавов железа с углеродом и другими металлами. Чугуны содержат около 4% углерода. Стали содержат углерода менее 1,4%.

Чугуны необходимы для производства различных отли­вок — станин тяжелых машин и т.п.

Изделия из чугуна

Стали используются для изготовления машин, различных строительных материалов, балок, листов, проката, рельсов, инструмента и множества других изделий. Для производства различных сортов сталей применяют так называемые легиру­ющие добавки, которыми служат различные металлы: Мn, Сr, Мо и другие, улучшающие качество стали.

Изделия из стали

«ПОЯВЛЕНИЕ ЖЕЛЕЗА»

ЭТО ИНТЕРЕСНО

ТРЕНАЖЁРЫ

Тренажёр №1 — Генетический ряд Fe 2+

Тренажёр №2 — Генетический ряд Fe 3+

Тренажёр №3 — Уравнения реакций железа с простыми и сложными веществами

Задания для закрепления

№1. Составьте уравнения реакций получения железа из его оксидов Fe2O3 и Fe3O4 , используя в качестве восстановителя:
а) водород;
б) алюминий;
в) оксид углерода (II).
Для каждой реакции составьте электронный баланс.

№2. Осуществите превращения по схеме:
Fe2O3  ->    Fe    —+h3O, t ->    X    —+CO, t->    Y    —+HCl->    Z
Назовите продукты X, Y, Z?

Iron — Информация об элементе, свойства и использование

Расшифровка:

Химия в своей стихии: железо

(Promo)

Вы слушаете Химию в ее стихии, представленную вам журналом Chemistry World , журналом Королевского химического общества.

(Конец промо)

Крис Смит

Здравствуйте, на этой неделе мы обратимся к одному из самых важных элементов человеческого тела.Это тот, который делает возможным метаболизм, и мы просто не знаем об этом. Есть вызовы железного человека, лидеры с железными кулаками и те, у кого в душе железо. Но у элемента номер 26 есть и темная сторона, потому что его мощный химический состав означает, что это также плохие новости для клеток мозга, как объясняет лауреат Нобелевской премии Кэри Маллис

Кэри Маллис

Для человеческого мозга железо важно, но смертельно опасно. Он существует на Земле в основном в двух степенях окисления — FeII и FeIII.FeIII преобладает в пределах нескольких метров от атмосферы, которая около двух миллиардов лет назад превратила 20% кислорода, окисляя это железо до состояния плюс три, которое практически нерастворимо в воде. Этот переход от относительно обильного и растворимого FeII потребовал тяжелого труда почти на всем живом в то время.

Выжившие наземные и обитающие в океане микробы выработали растворимые молекулы сидерофоров, чтобы восстановить доступ к этому многочисленному, но в остальном недоступному важному ресурсу, который использовал гидроксаматные или катехоловые хелатирующие группы, чтобы вернуть FeIII в раствор.Со временем появились высшие организмы, включая животных. А животные использовали энергию рекомбинации кислорода с углеводородами и углеводами в растительной жизни, чтобы обеспечить движение. Железо было неотъемлемой частью этого процесса.

Но ни одно животное, однако, не смогло адекватно справиться в долгосрочной перспективе — то есть восьмидесятилетней продолжительности жизни — с тем фактом, что железо необходимо для преобразования солнечной энергии в движение, но практически нерастворимо в воде при нейтральной pH и, что еще хуже, токсичен.

Углерод, сера, азот. кальций, магний, натрий и, возможно, десять других элементов также участвуют в жизни, но ни один из них не обладает способностью железа перемещать электроны, и ни один из них не способен полностью разрушить всю систему. Железо делает. Системы эволюционировали, чтобы поддерживать железо в определенных полезных и безопасных конфигурациях — ферменты, которые используют его каталитические свойства, или трансферрины и гемосидерины, которые перемещают его и хранят. Но они не идеальны. Иногда атомы железа неуместны, и нет известных систем для повторного улавливания железа, осажденного внутри клетки.

В некоторых тканях клетки, перегруженные железом, могут быть переработаны или уничтожены, но это не работает с нейронами.

Нейроны за время своего существования порождают тысячи процессов, стремясь сформировать сети соединений с другими нейронами. В процессе развития мозга взрослого человека большой процент клеток полностью удаляется, и добавляются новые. Это процесс обучения. Но как только какая-то область мозга заработает, уже ничего нельзя будет сделать биологически, если по какой-либо причине перестает работать большое количество ее клеток.

Причиной этого, вероятно, является медленная ползучесть осажденного железа на протяжении многих десятилетий. В менее сложных тканях, таких как печень, могут активироваться новые стволовые клетки, но в мозгу необходимы обученные, структурно сложные, взаимосвязанные нейроны с тысячами проекций, которые накапливаются за время обучения. Таким образом, результатом является медленно прогрессирующее нейродегенеративное заболевание, такое как болезни Паркинсона и Альцгеймера.

Тот же самый основной механизм может привести к множеству заболеваний.Есть двадцать или тридцать белков, которые связаны с железом в мозгу — удерживают железо и передают его с места на место. Каждый новый человек, наделенный новым набором хромосом, наделен новым набором этих белков. Некоторые комбинации будут лучше, чем другие, а некоторые будут опасны по отдельности и в совокупности.

Мутация в гене, который кодирует один из этих белков, может нарушить его функцию, что приведет к потере атомов железа. Эти атомы, которые были потеряны из химических групп, которые их удерживают, не всегда будут безопасно возвращены в какую-либо структуру, такую ​​как трансферрин или гемоферритин.Некоторые из них вступят в реакцию с водой и исчезнут навсегда. Только они не совсем потеряны. Они накапливаются в несчастливых типах клеток, которые были назначенными местами для экспрессии белков с наибольшей утечкой железа. И оксиды железа не просто занимают критическое место. Железо очень реактивно. Печально известные «реактивные формы кислорода», которые, как подозревают, вызывают столько возрастных заболеваний, могут возникать только из-за различных форм железа.

Пришло время специалистам в области химии, разбирающимся в химии железа, обратить внимание на нейродегенеративные заболевания.

Крис Смит

Кэри Маллис рассказывает историю железа, элемента, без которого мы не можем обойтись, но который в то же время может держать ключ к нашему неврологическому падению. В следующий раз на «Химии в ее элементе» Джонни Болл расскажет историю Марии Кюри и элемента, который она обнаружила и затем назвала в честь ее родины.

Джонни Болл

Пичбленда, урансодержащая руда, казалась слишком радиоактивной, чем можно было объяснить ураном.Они просеивали и отсортировывали вручную унцию за унцией через тонны урана в проветриваемом морозильном помещении, прежде чем в конечном итоге были обнаружены крошечные количества полония.

Крис Смит

Так что будьте радиоактивными или, по крайней мере, будьте активны в подкасте и присоединяйтесь к нам, чтобы узнать загадочную историю о полонии на следующей неделе в «Химии в его элементе». Я Крис Смит, спасибо за внимание, увидимся в следующий раз.

(промо)

(конец промо)

Железо (элемент) — факты, история, где оно найдено и как используется

От важнейшего строительного блока из стали до питательных растений и помощи в переносе кислорода в кровь — железо всегда помогает поддерживать жизнь на Земле.

Железо — хрупкое твердое вещество, классифицируемое как металл группы 8 Периодической таблицы элементов. Самый распространенный из всех металлов, его чистая форма быстро корродирует от воздействия влажного воздуха и высоких температур. Железо также является четвертым по весу элементом земной коры, и большая часть ядра Земли, как полагают, состоит из железа. По данным Лос-Аламосской национальной лаборатории, помимо того, что он обычно встречается на Земле, его много на Солнце и звездах. Согласно лаборатории Джефферсона, железо имеет решающее значение для выживания живых организмов.У растений он играет роль в производстве хлорофилла. У животных это компонент гемоглобина — белка крови, который переносит кислород из легких в ткани организма.

По данным Королевского химического общества, 90 процентов всего металла, который очищается в наши дни, составляет железо. Большая часть его используется для производства стали — сплава железа и углерода — которая, в свою очередь, используется в производстве и гражданском строительстве, например, для изготовления железобетона. Нержавеющая сталь, содержащая не менее 10.5 процентов хрома, обладает высокой устойчивостью к коррозии. Он используется в кухонных столовых приборах, бытовой технике и кухонной посуде, такой как сковороды и сковороды из нержавеющей стали. Добавление других элементов может придать стали другие полезные качества. Например, никель увеличивает его прочность и делает его более устойчивым к нагреванию и кислотам; По данным лаборатории Джефферсона, марганец делает его более долговечным, а вольфрам помогает сохранять твердость при высоких температурах.

Только факты

  • Атомный номер (количество протонов в ядре): 26
  • Атомный символ (в Периодической таблице элементов): Fe
  • Атомный вес (средняя масса атома): 55.845
  • Плотность: 7,874 грамма на кубический сантиметр
  • Фаза при комнатной температуре: твердое вещество
  • Точка плавления: 2800,4 градуса по Фаренгейту (1538 градусов Цельсия)
  • Точка кипения: 5181,8 F (2861 C)
  • Количество изотопов (атомов один и тот же элемент с другим числом нейтронов): (укажите количество стабильных изотопов): 33 Стабильные изотопы: 4
  • Наиболее распространенные изотопы: Железо-56 (естественное содержание: 91,754 процента)

(Изображение предоставлено Грегом Робсон / Creative Commons, Андрей Маринкас Shutterstock)

История и свойства железа

По данным Jefferson Lab, археологи подсчитали, что люди использовали железо более 5000 лет.Фактически, оказывается, что часть самого древнего железа, известного человеку, буквально упала с неба. В исследовании, опубликованном в 2013 году в Journal of Archeological Science, исследователи изучили древнеегипетские железные бусы, датируемые примерно 3200 годом до нашей эры. и обнаружил, что они были сделаны из железных метеоритов. По данным Лос-Аламосской национальной лаборатории, Ветхий Завет в Библии также неоднократно упоминает железо.

Железо в основном получают из минералов гематита и магнетита. По данным лаборатории Джефферсона, в меньшей степени его также можно получить из минералов таконита, лимонита и сидерита.По данным Лос-Аламосской национальной лаборатории, у железа есть четыре различных аллотропных формы, что означает, что оно имеет четыре различные структурные формы, в которых атомы связываются по-разному. Эти формы называются ферритами, известными как альфа (магнитная), бета, гамма и омега.

Железо — важное питательное вещество в нашем рационе. Дефицит железа, наиболее распространенный дефицит питания, может вызвать анемию и усталость, которые влияют на способность выполнять физическую работу у взрослых. По данным Центров по контролю и профилактике заболеваний, он также может ухудшить память и другие психические функции у подростков.CDC предупреждает, что женщины, у которых наблюдается дефицит железа во время беременности, подвергаются повышенному риску рождения маленьких и ранних детей.

Существует два типа диетического железа: гемовое и негемовое. Гемовое железо, которое является наиболее легко усваиваемым типом железа, содержится в мясе, рыбе и птице, в то время как негемовое железо, которое также усваивается, но в меньшей степени, чем гемовое железо, содержится в обеих растительных продуктах (например, шпинат, капуста и брокколи) и мясо, согласно данным Американского Красного Креста. Люди поглощают до 30 процентов гемового железа по сравнению с 2-10 процентами негемового железа, сообщает ARC, добавляя, что продукты, богатые витамином С, такие как помидоры или цитрусовые, могут помочь людям усваивать негемовое железо.

Кто знал?

  • По данным Калифорнийского университета в Санта-Барбаре, кровь имеет красный цвет из-за взаимодействия железа и кислорода. Кровь выглядит красной из-за того, как химические связи между двумя элементами отражают свет.
  • По данным Денверского университета, чистое железо на самом деле мягкое и податливое.
  • В 2007 году исследователи обнаружили огромный шлейф богатой железом воды, исходящей из гидротермальных источников в южной части Атлантического океана.
  • Железо необходимо для роста фитопланктона — крошечных морских бактерий, которые используют углекислый газ из атмосферы в качестве топлива для фотосинтеза. Поэтому некоторые исследователи утверждали, что удобрение океанов дополнительным количеством железа может помочь поглотить избыток углекислого газа. Но исследование, опубликованное в Интернете в ноябре 2010 года в Proceedings of the National Academy of Sciences, показало, что это может быть не такой уж и хорошей идеей, поскольку все это дополнительное железо может фактически вызвать рост токсин-продуцирующих водорослей, которые способствуют загрязнению морских дикая природа.
  • По данным Королевского химического общества, около 90 процентов всего металла, который сегодня очищается, составляет железо.
  • По данным Лос-Аламосской национальной лаборатории, железо является важным компонентом метеоритов, известных как сидериты.
  • По данным Лос-Аламосской национальной лаборатории, железный столб, датируемый примерно 400 годом нашей эры, до сих пор стоит в Дели, Индия. Высота столба составляет около 23,75 футов (7,25 метра), а диаметр — 15,75 дюйма (40 сантиметров). Несмотря на воздействие погодных условий, столб не сильно корродировал благодаря уникальному составу металлов.
  • Примеры продуктов, богатых железом, включают мясо, такое как говядина, индейка, курица и свинина; морепродукты, такие как креветки, моллюски, устрицы и тунец; овощи, такие как шпинат, горох, брокколи, сладкий картофель и стручковая фасоль; хлеб и крупы, такие как хлопья с отрубями, цельнозерновой хлеб и обогащенный рис; другие продукты, такие как бобы, чечевица, томатная паста, тофу и патока, по данным американского Красного Креста.
  • По данным Nature, поверхность Марса имеет красный цвет из-за большого количества оксида железа (ржавчины) на ее поверхности.В коре Марса более чем в два раза больше оксида железа, чем на Земле.
  • Твердое внутреннее и жидкое внешнее ядро ​​Земли в основном состоят из железа (примерно 85 процентов и 80 процентов по весу, соответственно). По данным НАСА, электрический ток, генерируемый жидким железом, создает магнитное поле, защищающее Землю. Железо также содержится в ядрах всех планет Солнечной системы.
  • По данным JPL, железо — самый тяжелый элемент, образующийся в ядрах звезд.Элементы тяжелее железа могут быть созданы только при взрыве звезд большой массы (сверхновых).
  • Латинское название железа — ferrum, которое является источником его атомного символа Fe.
  • Слово железо происходит от англосаксонского слова iren. Слово «железо», возможно, произошло от более ранних слов, означающих «святой металл», потому что оно использовалось для изготовления мечей, используемых в крестовых походах, согласно WebElements.

Текущие исследования

Железо было предметом многочисленных медицинских исследований, некоторые из которых показывают, что высокий уровень железа в крови может быть связан с повышенным риском сердечно-сосудистых заболеваний.«Некоторые исследования показывают, что люди, у которых больше ферритина в системе крови и маркеры повышенного содержания железа в организме, могут быть более подвержены риску некоторых сердечно-сосудистых заболеваний», — сказала Джудит Вайли-Розетт, профессор кафедры эпидемиологии. здоровье населения и медицинский факультет Медицинского колледжа Альберта Эйнштейна Университета Иешива в Нью-Йорке. «И вызывает ли это риск или это биомаркер чего-то еще, неясно», — сказала Уайли-Розетт Live Science.(Ферритин — это тип белка, который накапливает железо, а тест на ферритин измеряет количество железа в крови.)

В исследовании, проведенном с участием более 1900 финских мужчин в возрасте от 42 до 60 лет, опубликованном в 1992 г. , исследователи обнаружили связь между высоким уровнем железа и повышенным риском сердечного приступа. В более недавнем исследовании, опубликованном в январе 2014 года в журнале Journal of Nutrition, исследователи обнаружили, что гемовое железо, обнаруженное в мясе, увеличивает риск ишемической болезни сердца на 57 процентов, но такой связи между негемовым железом и риск ишемической болезни сердца.

Интересно, что недавние исследования также связали накопление железа в головном мозге с болезнью Альцгеймера. В исследовании, опубликованном в августе 2013 года в Журнале болезни Альцгеймера, исследователи обнаружили, что количество железа в гиппокампе — области мозга, связанной с формированием воспоминаний — было увеличено и связано с повреждением тканей в области гиппокампа у людей. с болезнью Альцгеймера, но не у здоровых пожилых людей.

«Накопление железа в головном мозге может зависеть от изменения факторов окружающей среды, таких как количество потребляемого нами красного мяса и пищевых добавок с железом, а у женщин, перенесших гистерэктомию перед менопаузой», — автор исследования д-р.Джордж Барцокис, профессор психиатрии в Институте неврологии и поведения человека им. Семела в Калифорнийском университете в Лос-Анджелесе, заявил в своем заявлении.

Дефицит железа также был связан с депрессией, согласно исследованию 2017 года, опубликованному в Journal of Psychiatric Research группой австралийских исследователей, которые пытались найти связь между генетикой, уровнем железа и депрессией, особенно у подростков. Исследователи обнаружили, что, хотя существует связь между уровнем железа в кровотоке и степенью депрессии, нет никаких доказательств генетической связи между ними.Исследователи использовали данные, полученные из исследований близнецов, и рассмотрели множество факторов при сравнении близнецов-подростков со взрослыми близнецами. Связь между уровнем железа и депрессией, скорее всего, будет наблюдаться в периоды времени, когда организму требуется большее количество железа, например, во время всплесков роста.

В статье 2017 года, опубликованной в European Journal of Nutrition исследовательской группой из Ирана, описывается исследование, в котором препараты железа давали новым, не страдающим анемией матерям с послеродовой депрессией (PPD).Группа из 70 женщин начала двойное слепое исследование через неделю после родов, и через шесть недель сравнили симптомы PPD. Группа, принимавшая добавку железа, испытала значительно большее улучшение симптомов PPD, чем группа, принимавшая плацебо.

Дополнительная информация от Рэйчел Росс, участника Live Science

Утюг | Источник питания

Железо — важный минерал, который помогает поддерживать здоровье крови. Недостаток железа называется железодефицитной анемией, от которой ежегодно страдают около 4-5 миллионов американцев.[1] Это самый распространенный дефицит питательных веществ во всем мире, вызывающий крайнюю усталость и головокружение. Он поражает всех возрастов, включая детей, беременных женщин или женщин в период менструации, а также людей, получающих диализ почек, среди тех, кто подвержен наибольшему риску этого состояния.

Железо — основной компонент гемоглобина, типа белка в красных кровяных тельцах, который переносит кислород из легких во все части тела. Без достаточного количества железа не хватает красных кровяных телец для транспортировки кислорода, что приводит к усталости.Железо также входит в состав миоглобина — белка, который переносит и хранит кислород именно в мышечных тканях. Железо важно для здорового развития и роста мозга детей, а также для нормального производства и функционирования различных клеток и гормонов.

Пищевое железо бывает двух видов: гемовое и негемовое. Гем содержится только в мясе животных, таких как мясо, птица и морепродукты. Негемовое железо содержится в растительных продуктах, таких как цельнозерновые, орехи, семена, бобовые и листовая зелень. Негемовое железо также содержится в мясе животных (поскольку животные потребляют растительную пищу с негемовым железом) и обогащенных продуктах.

Железо хранится в организме в виде ферритина (в печени, селезенке, мышечной ткани и костном мозге) и доставляется по всему телу с помощью трансферрина (белка в крови, который связывается с железом). Врач может иногда проверять уровень этих двух компонентов в крови при подозрении на анемию.

Рекомендуемое количество

RDA: Рекомендуемая суточная доза (RDA) для взрослых 19-50 лет составляет 8 мг в день для мужчин, 18 мг для женщин, 27 мг для беременности и 9 мг для кормления грудью.[2] Более высокие количества у женщин и во время беременности связаны с потерей крови во время менструации и из-за быстрого роста плода, требующего дополнительной циркуляции крови во время беременности. Подростки 14-18 лет, активно растущие, также нуждаются в повышенном содержании железа: 11 мг для мальчиков, 15 мг для девочек, 27 мг для беременности и 10 мг для кормления грудью. Рекомендуемая суточная норма для женщин 51+ лет снижается до 8 мг при условии, что менструация прекратилась во время менопаузы. Можно отметить, что у некоторых женщин менопауза наступает позже, поэтому им следует продолжать соблюдать РСНП для более молодых женщин, пока менопауза не будет подтверждена.

UL: Допустимый верхний уровень потребления — это максимальное суточное потребление, которое вряд ли окажет вредное воздействие на здоровье. UL для железа составляет 45 мг в день для всех мужчин и женщин в возрасте от 14 лет. Для младшего возраста UL составляет 40 мг.

Источники питания

Мясо, птица и морепродукты наиболее богаты гемовым железом. Обогащенные злаки, орехи, семена, бобовые и овощи содержат негемовое железо. В США многие виды хлеба, крупы и детские смеси обогащены железом.

Гемовое железо лучше усваивается организмом, чем негемовое железо. Определенные факторы могут улучшить или замедлить абсорбцию негемового железа. Витамин С и гемовое железо, принимаемые за один прием пищи, могут улучшить усвоение негемового железа. Клетчатка отрубей, большое количество кальция, особенно из добавок, и растительные вещества, такие как фитаты и дубильные вещества, могут препятствовать усвоению негемового железа. [3]

Источники гемового железа:
  • Устрицы, моллюски, мидии
  • Печень говяжья или куриная
  • Мясные субпродукты
  • Консервы сардины
  • Говядина
  • Птица
  • Консервы из светлого тунца
Источники негемового железа:
  • Обогащенные хлопья для завтрака
  • Бобы
  • Темный шоколад (не менее 45%)
  • Чечевица
  • Шпинат
  • Картофель в кожуре
  • Орехи, семена
  • Обогащенный рис или хлеб
Железо доступно в виде добавок.Некоторые злаки и поливитаминные / минеральные добавки обогащены железом на 100% от рекомендуемой суточной нормы для женщин (18 мг). Безрецептурные добавки с железом в высоких дозах, назначаемые пациентам с железодефицитной анемией или подверженным высокому риску, могут содержать 65 мг или более. Обычно сообщаемые побочные эффекты от приема добавок железа в высоких дозах включают запор и тошноту.
Путаница с добавками железа

Есть несколько типов железа, доступных без рецепта, например.г., сульфат железа, фумарат железа, глюконат железа. Путаница также вызывается двумя цифрами, указанными на этикетке: большим и меньшим. В чем разница между формами добавок и к какому номеру нужно обратиться, чтобы выбрать правильную сумму?

Элементарная и химическая форма железа. Если на этикетке указаны два количества железа, большее число обозначает форму химического соединения, потому что железо связано с солями (например, сульфатом железа), тогда как меньшее число относится только к количеству железа в соединении, которое также называется элементарное железо.Элементарное железо является более важным числом, потому что это количество, доступное для поглощения организмом. Однако врач может не указывать в рецепте, является ли количество железа химической формой или элементарным железом. Например, добавка сульфата двухвалентного железа может указывать в общей сложности 325 мг сульфата двухвалентного железа на лицевой стороне этикетки и 65 мг элементарного железа меньшим шрифтом на оборотной стороне. Если бы врач прописал 65 мг железа, вы бы приняли пять таблеток, равных 325 мг, или только одну таблетку, если в рецепте говорится о элементарном железе?

Разные типы. Все типы дополнительного железа помогают увеличить производство красных кровяных телец, но различаются по стоимости и количеству элементарного железа. Глюконат железа обычно продается в жидкой форме, и некоторые клинические исследования показали, что он лучше усваивается, чем таблетки сульфата железа. Однако глюконат двухвалентного железа содержит меньше элементарного железа, чем сульфат двухвалентного железа, поэтому для устранения дефицита может потребоваться более высокая дозировка. К тому же он дороже сульфата железа. Были введены новые формы железа с медленным высвобождением, которые могут помочь уменьшить побочные эффекты со стороны желудочно-кишечного тракта, но они более дороги и обычно содержат меньше железа.

Любая путаница с типами и количествами добавок железа может быть решена, если попросить вашего врача указать как элементарное количество, так и количество химического соединения. Вы также можете обратиться к фармацевту в магазине за помощью в толковании рецепта врача или порекомендовать соответствующую сумму, если у вас нет рецепта.

Признаки дефицита и токсичности
Дефицит

Дефицит железа чаще всего наблюдается у детей, женщин во время менструации или беременных, а также у тех, кто придерживается диеты с низким содержанием железа.

Дефицит железа возникает поэтапно. [4] Легкая форма начинается со снижения запасов железа, обычно либо из-за диеты с низким содержанием железа, либо из-за чрезмерного кровотечения. Если это не разрешится, следующим этапом будет более сильное истощение запасов железа и снижение количества красных кровяных телец. В конечном итоге это приводит к железодефицитной анемии (ЖДА), когда запасы железа истощаются, и происходит значительная потеря общего количества эритроцитов. Обычно врач проверяет анемию, сначала проверяя общий анализ крови (включая гемоглобин, гематокрит и другие факторы, которые измеряют объем и размер эритроцитов).Если он ниже нормы, можно измерить уровни ферритина и трансферрина, чтобы определить, является ли тип анемии ЖДА (существуют другие формы анемии, не вызванные конкретно дефицитом железа). Все эти меры уменьшатся с МАР.

Признаки МАР:

  • Усталость, слабость
  • Легкомысленность
  • Путаница, потеря концентрации
  • Чувствительность к холоду
  • Одышка
  • Учащенное сердцебиение
  • Бледная кожа
  • Выпадение волос, ломкость ногтей
  • Pica: тяга к грязи, глине, льду и другим непродовольственным товарам

ЖДА обычно корректируется пероральными добавками железа до 150-200 мг элементарного железа в день.Людям с высоким риском ЖДА можно прописать 60-100 мг в день. Уровни в крови следует периодически проверять, а прием добавок следует прекратить или принимать в более низких дозах, если уровни вернутся к норме, поскольку длительные высокие дозы могут привести к запорам или другим расстройствам пищеварения.

Группы риска по МАР:

  • Беременные женщины — во время беременности у женщины вырабатывается гораздо большее количество красных кровяных телец для плода, что увеличивает потребность в дополнительных пищевых добавках или железе.ЖДА во время беременности может привести к преждевременным родам или низкому весу при рождении, поэтому железо обычно включают в пренатальные витамины. Центры по контролю и профилактике заболеваний рекомендуют всем беременным женщинам начинать принимать 30 мг дополнительного железа в день. [3]
  • Менструирующие женщины — у женщин, у которых во время менструации наблюдается сильное кровотечение (продолжающееся более 7 дней или пропитывающееся через тампоны или прокладки один раз в час), может развиться ЖДА.
  • Дети — младенцы и дети имеют повышенную потребность в железе из-за их быстрого роста.
  • Пожилые люди — пожилые люди связаны с более высоким риском плохого питания и хронических воспалительных заболеваний, которые могут привести к анемии. [1]
  • Вегетарианцы — у тех, кто придерживается диеты без гемового железа из мяса, рыбы и птицы, может развиться ЖДА, если они не включают в свой рацион адекватные продукты, не содержащие гемового железа. Поскольку негемовое железо плохо усваивается, либо требуется большее количество этих продуктов, либо необходимо внимательно следить за тем, как их употреблять, чтобы улучшить усвоение (употребление с продуктами, богатыми витамином С, при избегании употребления продуктов, богатых кальцием, добавки кальция или чай).
  • Спортсмены на выносливость — бег может вызвать незначительное желудочно-кишечное кровотечение и состояние, называемое гемолизом «удар ногой», при котором эритроциты разрушаются быстрее. Спортсменки, занимающиеся спортом на выносливость, у которых также происходят менструации, подвергаются наибольшему риску ЖДА. [4]
  • Люди с хронической почечной недостаточностью на диализе — почки вырабатывают гормон эритропоэтин (ЭПО), который сигнализирует организму о выработке красных кровяных телец. Почечная недостаточность снижает выработку ЭПО и, следовательно, клеток крови.Кроме того, во время гемодиализа наблюдается некоторая кровопотеря.
Что такое анемия хронического заболевания?

Анемия хронического заболевания (AOCD) возникает не из-за низкого потребления железа, а из-за состояний, вызывающих воспаление в организме, таких как инфекции, рак, заболевание почек, воспалительное заболевание кишечника, сердечная недостаточность, волчанка и ревматоидный артрит. На самом деле в организме может содержаться нормальное количество железа, но его уровень в крови очень низкий. Воспаление изменяет иммунную функцию организма, не позволяя организму использовать доступное запасенное железо для выработки красных кровяных телец, а также заставляя клетки крови быстрее умирать.

Лечение AOCD направлено на лечение воспалительного состояния. Увеличение количества железа в рационе обычно не помогает. Если воспаление или состояние улучшаются, анемия обычно также уменьшается. В редких тяжелых случаях может быть назначено переливание крови, чтобы быстро повысить уровень гемоглобина в крови.

Токсичность

Токсичность встречается редко, потому что организм регулирует абсорбцию железа и будет поглощать меньше, если запасы железа достаточны.[2] Избыточное количество железа чаще всего возникает из-за приема высоких доз добавок, когда в них нет необходимости, или из-за генетического заболевания, в котором хранится слишком много железа.

Общие признаки:

  • Запор
  • Расстройство желудка
  • Тошнота, рвота
  • Боль в животе

У некоторых людей есть наследственное заболевание, называемое гемохроматозом, которое вызывает чрезмерное накопление железа в организме. Периодически проводятся процедуры для удаления крови или избытка железа в крови.Людей с гемохроматозом приучают соблюдать диету с низким содержанием железа и избегать приема добавок железа и витамина С. Если не лечить, железо может накапливаться в определенных органах, что повышает риск развития таких состояний, как цирроз печени, рак печени или болезни сердца.

Знаете ли вы?

При тщательном планировании можно получить достаточное количество железа из вегетарианской / веганской диеты. Попробуйте это простое блюдо, которое может повысить уровень железа за счет сочетания продуктов, богатых негемовым железом и витамином C:

  • В большой миске смешайте приготовленную фасоль или чечевицу с нарезанными кубиками свежими помидорами, сырым молодым шпинатом, тыквенными семечками или кешью, изюмом или сушеными нарезанными абрикосами.Сбрызните простой лимонной заправкой из 2 столовых ложек лимонного сока, ½ чайной ложки дижонской горчицы, 3 столовых ложек оливкового масла и 1 чайной ложки меда (по желанию). Хорошо перемешайте ингредиенты и дайте им постоять не менее 15 минут, чтобы все вкусы растворились.
Каталожные номера
  1. Le CH. Распространенность анемии и анемии средней и тяжелой степени среди населения США (NHANES 2003-2012). PLoS One . 2016 15 ноября; 11 (11): e0166635.
  2. Институт медицины. Совет по продовольствию и питанию. Нормы потребления витамина А, витамина К, мышьяка, бора, хрома, меди, йода, железа, марганца, молибдена, никеля, кремния, ванадия и цинка: отчет Группы по микронутриентам . Вашингтон, округ Колумбия: Национальная академия прессы; 2001.
  3. Управление пищевых добавок национальных институтов здравоохранения: информационный бюллетень по железу для специалистов в области здравоохранения https://ods.od.nih.gov/factsheets/Iron-HealthProfessional/. Дата обращения 02.09.2019.
  4. Пауэрс Дж. М., Бьюкенен Г. Р.. Нарушения метаболизма железа: новые подходы к диагностике и лечению дефицита железа. Гематологические / онкологические клиники . 1 июня 2019; 33 (3): 393-408.

Условия использования

Содержание этого веб-сайта предназначено для образовательных целей и не предназначено для предоставления личных медицинских консультаций. Вам следует обратиться за советом к своему врачу или другому квалифицированному поставщику медицинских услуг с любыми вопросами, которые могут у вас возникнуть относительно состояния здоровья. Никогда не пренебрегайте профессиональным медицинским советом и не откладывайте его обращение из-за того, что вы прочитали на этом веб-сайте. Nutrition Source не рекомендует и не поддерживает какие-либо продукты.

Железодефицитная анемия — симптомы и причины

Обзор

Железодефицитная анемия — это распространенный тип анемии — состояние, при котором в крови не хватает адекватных здоровых эритроцитов. Красные кровяные тельца переносят кислород в ткани тела.

Как следует из названия, железодефицитная анемия возникает из-за недостатка железа. Без достаточного количества железа ваше тело не может производить в красных кровяных тельцах достаточное количество вещества, которое позволяет им переносить кислород (гемоглобин).В результате железодефицитная анемия может вызывать у вас усталость и одышку.

Обычно железодефицитную анемию можно вылечить с помощью препаратов железа. Иногда необходимы дополнительные тесты или лечение железодефицитной анемии, особенно если ваш врач подозревает, что у вас внутреннее кровотечение.

Продукты и услуги

Показать больше товаров от Mayo Clinic

Симптомы

Первоначально железодефицитная анемия может быть настолько легкой, что остается незамеченной.Но по мере того, как в организме становится больше дефицита железа и ухудшается анемия, признаки и симптомы усиливаются.

Признаки и симптомы железодефицитной анемии могут включать:

  • Экстремальная усталость
  • Слабость
  • Бледная кожа
  • Боль в груди, учащенное сердцебиение или одышка
  • Головная боль, головокружение или дурноту
  • Холодные руки и ноги
  • Воспаление или болезненность языка
  • Гвозди ломкие
  • Необычная тяга к непитательным веществам, таким как лед, грязь или крахмал
  • Плохой аппетит, особенно у младенцев и детей с железодефицитной анемией

Когда обращаться к врачу

Если у вас или у вашего ребенка появляются признаки и симптомы, предполагающие железодефицитную анемию, обратитесь к врачу.Железодефицитная анемия не подлежит самодиагностике или лечению. Поэтому лучше обратитесь к врачу для постановки диагноза, чем самостоятельно принимать добавки железа. Перегрузка организма железом может быть опасной, потому что избыточное накопление железа может повредить вашу печень и вызвать другие осложнения.

Причины

Железодефицитная анемия возникает, когда вашему организму не хватает железа для производства гемоглобина. Гемоглобин — это часть красных кровяных телец, которая придает крови красный цвет и позволяет эритроцитам переносить насыщенную кислородом кровь по всему телу.

Если вы не потребляете достаточно железа или теряете слишком много железа, ваше тело не может производить достаточное количество гемоглобина, и в конечном итоге разовьется железодефицитная анемия.

Причины железодефицитной анемии включают:

  • Кровопотеря. Кровь содержит железо в красных кровяных тельцах. Поэтому, если вы теряете кровь, вы теряете немного железа. Женщины с обильными менструациями подвержены риску железодефицитной анемии, потому что они теряют кровь во время менструации. Медленная хроническая кровопотеря в организме — например, от язвенной болезни, грыжи пищеводного отверстия диафрагмы, полипа толстой кишки или колоректального рака — может вызвать железодефицитную анемию.Желудочно-кишечное кровотечение может возникнуть в результате регулярного приема некоторых безрецептурных болеутоляющих, особенно аспирина.
  • Недостаток железа в вашем рационе. Ваше тело регулярно получает железо из продуктов, которые вы едите. Если вы потребляете слишком мало железа, со временем в вашем организме может возникнуть дефицит железа. Примеры продуктов, богатых железом, включают мясо, яйца, листовые зеленые овощи и продукты, обогащенные железом. Для правильного роста и развития младенцам и детям также необходимо железо из своего рациона.
  • Неспособность усваивать железо. Железо из пищи всасывается в кровоток в тонком кишечнике. Заболевание кишечника, такое как глютеновая болезнь, которое влияет на способность кишечника усваивать питательные вещества из переваренной пищи, может привести к железодефицитной анемии. Если часть тонкой кишки была удалена или удалена хирургическим путем, это может повлиять на вашу способность усваивать железо и другие питательные вещества.
  • Беременность. Без добавок железа железодефицитная анемия возникает у многих беременных женщин, потому что их запасы железа должны служить их собственному увеличенному объему крови, а также быть источником гемоглобина для растущего плода.

Факторы риска

Эти группы людей могут иметь повышенный риск железодефицитной анемии:

  • Женщины. Поскольку женщины теряют кровь во время менструации, женщины в целом подвергаются большему риску железодефицитной анемии.
  • Младенцы и дети. Младенцы, особенно дети с низкой массой тела при рождении или рожденные недоношенными, которые не получают достаточного количества железа из грудного молока или смеси, могут подвергаться риску дефицита железа. Детям нужно дополнительное железо во время скачков роста.Если ваш ребенок не придерживается здоровой и разнообразной диеты, он может быть подвержен риску анемии.
  • Вегетарианцы. Люди, которые не едят мясо, могут иметь больший риск железодефицитной анемии, если они не едят другие продукты, богатые железом.
  • Частые доноры крови. Люди, которые регулярно сдают кровь, могут иметь повышенный риск железодефицитной анемии, поскольку сдача крови может истощить запасы железа. Низкий гемоглобин, связанный с донорством крови, может быть временной проблемой, которую можно решить, употребляя больше продуктов, богатых железом.Если вам сказали, что вы не можете сдавать кровь из-за низкого гемоглобина, спросите своего врача, следует ли вам беспокоиться.

Осложнения

Легкая железодефицитная анемия обычно не вызывает осложнений. Однако при отсутствии лечения железодефицитная анемия может стать серьезной и привести к проблемам со здоровьем, включая следующие:

  • Проблемы с сердцем. Железодефицитная анемия может привести к учащенному или нерегулярному сердцебиению. Ваше сердце должно перекачивать больше крови, чтобы компенсировать недостаток кислорода в крови, когда вы страдаете анемией.Это может привести к увеличению сердца или сердечной недостаточности.
  • Проблемы при беременности. У беременных женщин тяжелая железодефицитная анемия связана с преждевременными родами и рождением детей с низкой массой тела. Но это состояние можно предотвратить у беременных женщин, которые получают добавки железа в рамках дородового ухода.
  • Проблемы роста. У младенцев и детей тяжелый дефицит железа может привести к анемии, а также к задержке роста и развития. Кроме того, железодефицитная анемия связана с повышенной восприимчивостью к инфекциям.

Профилактика

Вы можете снизить риск железодефицитной анемии, выбирая продукты, богатые железом.

Выбирайте продукты, богатые железом

Продукты, богатые железом, включают:

  • Красное мясо, свинина и птица
  • Морепродукты
  • Бобы
  • Темно-зеленые листовые овощи, такие как шпинат
  • Сушеные фрукты, такие как изюм и абрикосы
  • Обогащенные железом крупы, хлеб и макаронные изделия
  • Горох

Ваш организм усваивает больше железа из мяса, чем из других источников.Если вы решите не есть мясо, возможно, вам придется увеличить потребление богатой железом растительной пищи, чтобы усвоить такое же количество железа, как и у тех, кто ест мясо.

Выбирайте продукты, содержащие витамин С, чтобы улучшить усвоение железа.

Вы можете улучшить усвоение железа своим организмом, выпив сок цитрусовых или употребляя другие продукты, богатые витамином С, одновременно с продуктами с высоким содержанием железа. Витамин С в соках цитрусовых, как и апельсиновый сок, помогает организму лучше усваивать пищевое железо.

Витамин C также содержится в:

  • Брокколи
  • Грейпфрут
  • Киви
  • Листовая зелень
  • Дыни
  • Апельсины
  • Перец
  • Клубника
  • Мандарины
  • Помидоры

Профилактика железодефицитной анемии у младенцев

Чтобы предотвратить железодефицитную анемию у младенцев, кормите ребенка грудным молоком или смесью, обогащенной железом в течение первого года.Коровье молоко не является хорошим источником железа для младенцев и не рекомендуется для детей младше 1 года. После 6 месяцев начните кормить ребенка обогащенными железом злаками или мясным пюре не реже двух раз в день, чтобы увеличить потребление железа. Через год убедитесь, что дети не пьют больше 20 унций (591 миллилитр) молока в день. Слишком много молока часто заменяет другие продукты, в том числе богатые железом.

Октябрь18, 2019

% PDF-1.5 % 24 0 obj> эндобдж xref 24 813 0000000016 00000 н. 0000017819 00000 п. 0000017956 00000 п. 0000016888 00000 п. 0000018036 00000 п. 0000018215 00000 п. 0000035868 00000 п. 0000035944 00000 п. 0000035978 00000 п. 0000036020 00000 п. 0000049230 00000 п. 0000064766 00000 п. 0000079776 00000 п. 0000094030 00000 п. 0000107088 00000 н. 0000120039 00000 н. 0000120294 00000 н. 0000120554 00000 н. 0000120811 00000 н. 0000121073 00000 н. 0000121318 00000 н. 0000121557 00000 н. 0000121993 00000 н. 0000122386 00000 н. 0000122858 00000 н. 0000123260 00000 н. 0000123731 00000 н. 0000124276 00000 н. 0000135559 00000 н. 0000150290 00000 н. 0000164483 00000 н. 0000186380 00000 н. 0000197741 00000 н. 0000200410 00000 н. 0000200462 00000 н. 0000200636 00000 н. 0000200800 00000 н. 0000200964 00000 н. 0000201138 00000 н. 0000201306 00000 н. 0000201477 00000 н. 0000201645 00000 н. 0000201810 00000 н. 0000201981 00000 н. 0000202149 00000 н. 0000202314 00000 н. 0000202485 00000 н. 0000202653 00000 н. 0000202824 00000 н. 0000202992 00000 н. 0000203163 00000 н. 0000203331 00000 н. 0000203502 00000 н. 0000203673 00000 н. 0000203838 00000 н. 0000204003 00000 н. 0000204171 00000 н. 0000204339 00000 н. 0000204504 00000 н. 0000204672 00000 н. 0000204840 00000 н. 0000205005 00000 н. 0000205176 00000 н. 0000205344 00000 н. 0000205509 00000 н. 0000205680 00000 н. 0000205848 00000 н. 0000206016 00000 н. 0000206182 00000 н. 0000206350 00000 н. 0000206518 00000 н. 0000206686 00000 н. 0000206854 00000 н. 0000207020 00000 н. 0000207188 00000 н. 0000207356 00000 н. 0000207521 00000 н. 0000207690 00000 н. 0000207856 00000 н. 0000208022 00000 н. 0000208191 00000 н. 0000208357 00000 н. 0000208522 00000 н. 0000208688 00000 н. 0000208854 00000 н. 0000209020 00000 н. 0000209186 00000 н. 0000209352 00000 н. 0000209521 00000 н. 0000209687 00000 н. 0000209856 00000 н. 0000210022 00000 н. 0000210191 00000 п. 0000210360 00000 п. 0000210526 00000 н. 0000210692 00000 п. 0000210861 00000 п. 0000211027 00000 н. 0000211196 00000 н. 0000211362 00000 н. 0000211528 00000 н. 0000211694 00000 п. 0000211859 00000 н. 0000212003 00000 н. 0000212168 00000 н. 0000212302 00000 н. 0000212468 00000 н. 0000212634 00000 н. 0000212803 00000 н. 0000212969 00000 н. 0000213135 00000 н. 0000213301 00000 п. 0000213467 00000 н. 0000213604 00000 н. 0000213770 00000 н. 0000213936 00000 н. 0000214105 00000 н. 0000214272 00000 н. 0000214441 00000 п. 0000214578 00000 н. 0000214745 00000 н. 0000214914 00000 п. 0000215080 00000 н. 0000215221 00000 н. 0000215387 00000 н. 0000215553 00000 н. 0000215722 00000 н. 0000215859 00000 н. 0000216025 00000 н. 0000216166 00000 н. 0000216307 00000 н. 0000216473 00000 н. 0000216614 00000 н. 0000216780 00000 н. 0000216946 00000 н. 0000217112 00000 н. 0000217249 00000 н. 0000217386 00000 н. 0000217527 00000 н. 0000217668 00000 н. 0000217805 00000 н. 0000217942 00000 н. 0000218083 00000 н. 0000218252 00000 н. 0000218389 00000 н. 0000218526 00000 н. 0000218663 00000 п. 0000218804 00000 п. 0000218945 00000 н. 0000219082 00000 н. 0000219223 00000 п. 0000219364 00000 н. 0000219530 00000 н. 0000219671 00000 н. 0000219808 00000 н. 0000219945 00000 н. 0000220082 00000 н. 0000220223 00000 п. 0000220364 00000 н. 0000220501 00000 н. 0000220638 00000 н. 0000220779 00000 н. 0000220920 00000 н. 0000221061 00000 н. 0000221202 00000 н. 0000221343 00000 н. 0000221480 00000 н. 0000221621 00000 н. 0000221762 00000 н. 0000221903 00000 н. 0000222044 00000 н. 0000222185 00000 н. 0000222326 00000 н. 0000222467 00000 н. 0000222608 00000 н. 0000222749 00000 н. 0000222886 00000 н. 0000223027 00000 н. 0000223168 00000 н. 0000223309 00000 н. 0000223450 00000 н. 0000223616 00000 н. 0000223757 00000 н. 0000223894 00000 н. 0000224031 00000 н. 0000224172 00000 н. 0000224313 00000 н. 0000224454 00000 н. 0000224623 00000 н. 0000224789 00000 н. 0000224930 00000 н. 0000225071 00000 н. 0000225237 00000 н. 0000225378 00000 п. 0000225519 00000 н. 0000225685 00000 н. 0000225826 00000 н. 0000225967 00000 н. 0000226108 00000 н. 0000226249 00000 н. 0000226390 00000 н. 0000226556 00000 н. 0000226693 00000 н. 0000226859 00000 н. 0000226996 00000 н. 0000227137 00000 н. 0000227303 00000 н. 0000227440 00000 н. 0000227581 00000 н. 0000227750 00000 н. 0000227891 00000 н. 0000228032 00000 н. 0000228173 00000 н. 0000228310 00000 н. 0000228479 00000 н. 0000228616 00000 н. 0000228757 00000 н. 0000228894 00000 н. 0000229031 00000 н. 0000229172 00000 н. 0000229313 00000 п. 0000229450 00000 н. 0000229617 00000 н. 0000229758 00000 н. 0000229899 00000 н. 0000230036 00000 н. 0000230177 00000 н. 0000230318 00000 н. 0000230484 00000 н. 0000230653 00000 п. 0000230794 00000 п. 0000230931 00000 н. 0000231072 00000 н. 0000231209 00000 н. 0000231375 00000 п. 0000231512 00000 н. 0000231649 00000 н. 0000231818 00000 н. 0000231955 00000 н. 0000232096 00000 н. 0000232233 00000 н. 0000232374 00000 н. 0000232515 00000 н. 0000232652 00000 н. 0000232818 00000 н. 0000232955 00000 н. 0000233121 00000 п. 0000233258 00000 н. 0000233427 00000 н. 0000233593 00000 н. 0000233730 00000 н. 0000233871 00000 п. 0000234037 00000 н. 0000234178 00000 п. 0000234319 00000 п. 0000234460 00000 н. 0000234601 00000 п. 0000234742 00000 н. 0000234883 00000 н. 0000235024 00000 н. 0000235161 00000 п. 0000235298 00000 п. 0000235439 00000 н. 0000235580 00000 н. 0000235721 00000 н. 0000235862 00000 н. 0000236003 00000 п. 0000236144 00000 н. 0000236313 00000 н. 0000236450 00000 н. 0000236616 00000 н. 0000236753 00000 н. 0000236922 00000 н. 0000237088 00000 н. 0000237254 00000 н. 0000237422 00000 н. 0000237592 00000 н. 0000237760 00000 н. 0000237928 00000 п. 0000238094 00000 н. 0000238825 00000 н. 0000238991 00000 н. 0000239722 00000 н. 0000239888 00000 н. 0000240054 00000 н. 0000240785 00000 н. 0000240951 00000 п. 0000241682 00000 н. 0000241848 00000 н. 0000242014 00000 н. 0000242180 00000 н. 0000242352 00000 н. 0000242518 00000 н. 0000242684 00000 н. 0000242850 00000 н. 0000243022 00000 н. 0000243188 00000 н. 0000243360 00000 н. 0000243532 00000 н. 0000243704 00000 н. 0000243876 00000 н. 0000244042 00000 н. 0000244214 00000 н. 0000244386 00000 п. 0000244558 00000 н. 0000244730 00000 н. 0000244902 00000 н. 0000245074 00000 н. 0000245240 00000 н. 0000245412 00000 н. 0000245584 00000 н. 0000245756 00000 н. 0000245928 00000 н. 0000246100 00000 н. 0000246272 00000 н. 0000246444 00000 н. 0000246616 00000 н. 0000246788 00000 н. 0000246960 00000 н. 0000247132 00000 н. 0000247304 00000 н. 0000247476 00000 н. 0000247613 00000 н. 0000247785 00000 н. 0000247957 00000 н. 0000248123 00000 н. 0000248291 00000 н. 0000248432 00000 н. 0000248573 00000 н. 0000248714 00000 н. 0000248886 00000 н. 0000249027 00000 н. 0000249164 00000 н. 0000249301 00000 н. 0000249442 00000 н. 0000249579 00000 п. 0000249720 00000 н. 0000249861 00000 н. 0000250002 00000 н. 0000250139 00000 н. 0000250276 00000 н. 0000250448 00000 н. 0000250589 00000 н. 0000250730 00000 н. 0000250867 00000 н. 0000251004 00000 н. 0000251145 00000 н. 0000251311 00000 н. 0000251480 00000 н. 0000251649 00000 н. 0000251786 00000 н. 0000251927 00000 н. 0000252064 00000 н. 0000252201 00000 н. 0000252369 00000 н. 0000252506 00000 н. 0000252675 00000 н. 0000252844 00000 н. 0000252981 00000 н. 0000253118 00000 н. 0000253255 00000 н. 0000253392 00000 н. 0000253533 00000 н. 0000253670 00000 н. 0000253807 00000 н. 0000253948 00000 н. 0000254089 00000 н. 0000254226 00000 н. 0000254363 00000 н. 0000254500 00000 н. 0000254637 00000 н. 0000254778 00000 н. 0000254915 00000 н. 0000255056 00000 н. 0000255197 00000 н. 0000255334 00000 н. 0000255471 00000 н. 0000255608 00000 н. 0000255774 00000 н. 0000255911 00000 н. 0000256048 00000 н. 0000256185 00000 н. 0000256351 00000 п. 0000256488 00000 н. 0000256625 00000 н. 0000256762 00000 н. 0000256899 00000 н. 0000257040 00000 н. 0000257177 00000 н. 0000257314 00000 н. 0000257455 00000 н. 0000257596 00000 н. 0000257737 00000 н. 0000257874 00000 н. 0000258040 00000 н. 0000258177 00000 н. 0000258314 00000 н. 0000258451 00000 п. 0000258588 00000 н. 0000258729 00000 н. 0000258870 00000 н. 0000259007 00000 н. 0000259144 00000 н. 0000259285 00000 н. 0000259422 00000 н. 0000259559 00000 н. 0000259696 00000 н. 0000259833 00000 н. 0000259970 00000 н. 0000260107 00000 п. 0000260244 00000 н. 0000260381 00000 п. 0000260518 00000 н. 0000260655 00000 н. 0000260792 00000 н. 0000260929 00000 н. 0000261097 00000 н. 0000261234 00000 н. 0000261375 00000 н. 0000261512 00000 н. 0000261653 00000 н. 0000261790 00000 н. 0000261927 00000 н. 0000262068 00000 н. 0000262205 00000 н. 0000262342 00000 п. 0000262483 00000 н. 0000262620 00000 н. 0000262757 00000 н. 0000262894 00000 н. 0000263031 00000 н. 0000263172 00000 н. 0000263309 00000 н. 0000263450 00000 н. 0000263591 00000 н. 0000263732 00000 н. 0000263873 00000 н. 0000264014 00000 н. 0000264151 00000 п. 0000264292 00000 н. 0000264433 00000 н. 0000265158 00000 н. 0000265299 00000 н. 0000265440 00000 н. 0000266165 00000 н. 0000266306 00000 н. 0000266447 00000 н. 0000267172 00000 н. 0000267313 00000 н. 0000268038 00000 н. 0000268179 00000 н. 0000268904 00000 н. 0000269045 00000 н. 0000269186 00000 н. 0000269327 00000 н. 0000270048 00000 н. 0000270189 00000 п. 0000270330 00000 н. 0000271051 00000 н. 0000271772 00000 н. 0000271909 00000 н. 0000272046 00000 н. 0000272183 00000 н. 0000272904 00000 н. 0000273625 00000 н. 0000274346 00000 н. 0000275067 00000 н. 0000275788 00000 н. 0000276509 00000 н. 0000276646 00000 н. 0000277367 00000 н. 0000278088 00000 н. 0000278225 00000 н. 0000278362 00000 н. 0000279083 00000 н. 0000279224 00000 н. 0000279365 00000 н. 0000279506 00000 н. 0000280231 00000 п. 0000280372 00000 н. 0000280509 00000 н. 0000280650 00000 н. 0000280791 00000 п. 0000280928 00000 н. 0000281065 00000 н. 0000281233 00000 н. 0000281370 00000 н. 0000281511 00000 н. 0000281648 00000 н. 0000281785 00000 н. 0000281926 00000 н. 0000282063 00000 н. 0000282200 00000 н. 0000282341 00000 п. 0000282478 00000 н. 0000282615 00000 н. 0000282756 00000 н. 0000282897 00000 н. 0000283034 00000 н. 0000283175 00000 н. 0000283316 00000 н. 0000283453 00000 п. 0000283590 00000 н. 0000283731 00000 н. 0000283872 00000 н. 0000284009 00000 н. 0000284146 00000 н. 0000284287 00000 н. 0000284424 00000 н. 0000284561 00000 н. 0000284702 00000 н. 0000284843 00000 н. 0000284980 00000 н. 0000285121 00000 н. 0000285258 00000 н. 0000285399 00000 н. 0000285540 00000 н. 0000285677 00000 н. 0000285818 00000 н. 0000285959 00000 н. 0000286096 00000 н. 0000286237 00000 н. 0000286374 00000 н. 0000286515 00000 н. 0000286656 00000 н. 0000286797 00000 н. 0000286938 00000 п. 0000287075 00000 п. 0000287216 00000 н. 0000287353 00000 п. 0000287490 00000 н. 0000287631 00000 н. 0000287772 00000 н. 0000287913 00000 п. 0000288050 00000 н. 0000288187 00000 н. 0000288328 00000 н. 0000288469 00000 н. 0000288606 00000 н. 0000288747 00000 н. 0000288884 00000 н. 0000289021 00000 н. 0000289158 00000 н. 0000289295 00000 н. 0000289432 00000 н. 0000289569 00000 н. 0000289706 00000 н. 0000289847 00000 н. 0000289984 00000 н. 00002

00000 н. 00002 00000 н. 00002 00000 н. 00002 00000 н. 00002

00000 н. 0000290818 00000 н. 0000290959 00000 н. 0000291100 00000 н. 0000291237 00000 н. 0000291374 00000 н. 0000291511 00000 н. 0000291652 00000 н. 0000291789 00000 н. 0000291926 00000 н. 0000292067 00000 н. 0000292204 00000 н. 0000292341 00000 п. 0000292482 00000 н. 0000292619 00000 н. 0000292756 00000 н. 0000292897 00000 н. 0000293034 00000 н. 0000293175 00000 н. 0000293316 00000 н. 0000293457 00000 н. 0000293598 00000 н. 0000293739 00000 н. 0000293876 00000 н. 0000294013 00000 н. 0000294154 00000 н. 0000294295 00000 н. 0000294436 00000 н. 0000294573 00000 н. 0000294710 00000 н. 0000294851 00000 н. 0000294988 00000 н. 0000295125 00000 н. 0000295266 00000 н. 0000295403 00000 н. 0000295540 00000 н. 0000295677 00000 н. 0000295818 00000 н. 0000295959 00000 н. 0000296096 00000 н. 0000296237 00000 п. 0000296374 00000 н. 0000296515 00000 н. 0000296652 00000 н. 0000296793 00000 н. 0000296934 00000 н. 0000297071 00000 н. 0000297208 00000 н. 0000297349 00000 н. 0000297486 00000 н. 0000297623 00000 н. 0000297764 00000 н. 0000297901 00000 н. 0000298042 00000 н. 0000298179 00000 н. 0000298348 00000 н. 0000298485 00000 н. 0000298654 00000 н. 0000298823 00000 н. 0000298992 00000 н. 0000299158 00000 н. 0000299330 00000 н. 0000299502 00000 н. 0000299639 00000 н. 0000299811 00000 н. 0000299952 00000 н. 0000300124 00000 н. 0000300261 00000 п. 0000300402 00000 п 0000300539 00000 п. 0000300680 00000 н. 0000300817 00000 н. 0000300958 00000 п. 0000301095 00000 н. 0000301236 00000 н. 0000301373 00000 н. 0000301514 00000 н. 0000301651 00000 н. 0000301788 00000 н. 0000301929 00000 н. 0000302066 00000 н. 0000302207 00000 н. 0000302348 00000 п. 0000302485 00000 н. 0000302655 00000 н. 0000302825 00000 н. 0000302966 00000 н. 0000303135 00000 н. 0000303276 00000 н. 0000303445 00000 н. 0000303586 00000 н. 0000303727 00000 н. 0000303864 00000 н. 0000304001 00000 н. 0000304138 00000 п. 0000304275 00000 н. 0000304416 00000 н. 0000304557 00000 н. 0000304698 00000 н. 0000304839 00000 н. 0000304980 00000 н. 0000305121 00000 п. 0000305262 00000 н. 0000305403 00000 н. 0000305544 00000 н. 0000305685 00000 н. 0000305826 00000 н. 0000305967 00000 н. 0000306108 00000 н. 0000306249 00000 н. 0000306390 00000 н. 0000306531 00000 н. 0000306672 00000 н. 0000306841 00000 н. 0000306982 00000 н. 0000307707 00000 н. 0000308432 00000 н. 0000309157 00000 н. 0000309326 00000 н. 0000310057 00000 н. 0000310788 00000 н. 0000311519 00000 н. 0000311688 00000 н. 0000311825 00000 н. 0000311962 00000 н. 0000312099 00000 н. 0000312236 00000 н. 0000312373 00000 н. 0000312510 00000 н. 0000313241 00000 н. 0000313382 00000 п. 0000313519 00000 н. 0000313660 00000 н. 0000313797 00000 н. 0000313938 00000 н. 0000314079 00000 п. 0000314220 00000 н. 0000314357 00000 н. 0000314527 00000 н. 0000314664 00000 н. 0000314801 00000 п. 0000314938 00000 н. 0000315110 00000 н. 0000315247 00000 н. 0000315384 00000 н. 0000315521 00000 н. 0000315658 00000 н. 0000315799 00000 н. 0000315936 00000 н. 0000316077 00000 н. 0000316214 00000 н. 0000316351 00000 н. 0000316488 00000 н. 0000316629 00000 н. 0000316766 00000 н. 0000316903 00000 н. 0000317040 00000 н. 0000317181 00000 н. 0000317318 00000 н. 0000317455 00000 н. 0000317592 00000 н. 0000317729 00000 н. 0000317870 00000 н. 0000318007 00000 н. 0000318144 00000 н. 0000318281 00000 н. 0000318418 00000 н. 0000318555 00000 н. 0000318692 00000 н. 0000318829 00000 н. 0000319001 00000 н. 0000319138 00000 н. 0000319275 00000 н. 0000319416 00000 н. 0000319553 00000 н. 0000319725 00000 н. 0000319862 00000 н. 0000319999 00000 н. 0000320140 00000 н. 0000320312 00000 н. 0000320453 00000 н. 0000320594 00000 н. 0000320766 00000 н. 0000320907 00000 н. 0000321044 00000 н. 0000321216 00000 н. 0000321388 00000 н. 0000321525 00000 н. 0000321666 00000 н. 0000321838 00000 н. 0000321979 00000 н. 0000322120 00000 н. 0000322261 00000 н. 0000322402 00000 н. 0000322543 00000 н. 0000322684 00000 н. 0000322821 00000 н. 0000322958 00000 н. 0000323099 00000 н. 0000323236 00000 н. 0000323373 00000 н. 0000323514 00000 н. 0000323651 00000 п. 0000323792 00000 н. 0000323929 00000 н. 0000324066 00000 н. 0000324203 00000 н. 0000324340 00000 н. 0000324477 00000 н. 0000324614 00000 н. 0000324755 00000 н. 0000324892 00000 н. 0000325029 00000 н. 0000325170 00000 н. 0000325307 00000 н. 0000325448 00000 н. 0000325585 00000 н. 0000325722 00000 н. 0000325859 00000 н. 0000325996 00000 н. 0000326133 00000 н. 0000326270 00000 н. 0000326407 00000 н. 0000326548 00000 н. 0000326685 00000 н. 0000326822 00000 н. 0000326963 00000 н. 0000327100 00000 н. 0000327237 00000 н. 0000327378 00000 н. 0000327519 00000 н. 0000327656 00000 н. 0000327797 00000 н. 0000327938 00000 н. 0000328075 00000 н. 0000328212 00000 н. 0000328353 00000 н. 0000328490 00000 н. 0000328631 00000 н. 0000328768 00000 н. 0000328909 00000 н. 0000329081 00000 н. 0000329222 00000 н. 0000329394 00000 н. 0000329566 00000 н. е ; wncY ގ5 {> I` {, e U, «* soO (zoG_f} JE-g \ KVPҸ [4HM: NCoo7hB * 3 / E8n-D `PTC-5 (jnp {SJaH Hl2k.d-2_ * дt ש v64Zr, D ߃ w «-F! | \ OOfWqәUa с

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Продукты, богатые железом, и анемия

Обзор

Что такое железо?

Железо — это минерал в организме человека. Это один из компонентов гемоглобина, вещества в красных кровяных тельцах, которое помогает крови переносить кислород по всему телу.

Если у вас недостаточно железа, ваше тело не может вырабатывать гемоглобин.Если это произойдет, у вас может развиться анемия — заболевание, которое возникает, когда в крови недостаточно гемоглобина. Когда у вас развивается анемия, вас называют «анемией».

Симптомы и причины

Каковы причины анемии?

Самая частая причина анемии — низкий уровень железа.Это наиболее распространенный тип анемии, известной как железодефицитная анемия. Железодефицитная анемия может развиться у любого человека, хотя следующие группы имеют больший риск:

  • Женщины, вследствие кровопотери во время месячных и при родах
  • Люди старше 65 лет, которые чаще придерживаются диеты с низким содержанием железа
  • Люди, принимающие препараты для разжижения крови, такие как аспирин, Плавикс®, Кумадин® или гепарин
  • Люди с почечной недостаточностью (особенно если они находятся на диализе), потому что у них проблемы с выработкой красных кровяных телец
  • Люди, плохо усваивающие железо

Ведение и лечение

Можно ли вылечить железодефицитную анемию?

Да.Этот тип анемии поддается лечению и излечению. Во-первых, ваш лечащий врач определит, вызвана ли анемия неправильным питанием или более серьезной проблемой со здоровьем. Тогда вы сможете лечить как анемию, так и ее причину. Железодефицитную анемию можно лечить с помощью добавок железа, принимаемых внутрь, или путем употребления в пищу продуктов с высоким содержанием железа.

Какие продукты содержат большое количество железа?

Железо в пище поступает из двух источников: животных и растений. Железо животного происхождения, известное как гемовое железо, содержится в мясе и рыбе.Растительное железо известно как негемовое железо и содержится в некоторых овощах и в продуктах, обогащенных железом, таких как сухие завтраки. Гемовое железо лучше усваивается организмом, чем негемовое железо.

Следующие продукты являются хорошими источниками гемового железа (животного происхождения):

  • Куриная печень
  • Устрицы
  • Моллюски
  • Печень говяжья
  • Говядина (жаркое из курицы, нежирный говяжий фарш)
  • Индейка
  • Тунец
  • Яйца
  • Креветки
  • Баранья ножка

Следующие продукты являются хорошими источниками негемового железа (из растений):

  • Изюмовые отруби (обогащенные)
  • Овсянка быстрого приготовления
  • Фасоль (почка, лима, флот)
  • Тофу
  • Чечевица
  • Меласса
  • Шпинат
  • Цельнозерновой хлеб
  • Арахисовое масло
  • Коричневый рис

Попробуйте сочетать продукты, не содержащие железа, с витамином С (например, стакан апельсинового сока), чтобы увеличить усвоение железа.

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *