Витамин н биохимия – — витамин Н — Биохимия

— витамин Н — Биохимия

Источники

Из пищевых продуктов витамин содержат печень, почки, горох, соя, цветная капуста, грибы. Также он синтезируется кишечной микрофлорой.

Суточная потребность

150-200 мкг.

Строение

Гетероциклическая часть молекулы состоит из имидазольного и тиофенонового циклов. К последнему присоединена валериановая кислота, которая связывается с лизином белковой части молекулы. Биотин-лизиновый конъюгат носит название биоцитин.

Перемещение СООН-группы при ферментативной реакции происходит при участии «рычага», состоящего из валериановой кислоты и радикала лизина.

Строение биотина
Роль биотина в переносе COOH-группы

 

Биохимические функции

Биотин участвует в переносе СО2 либо из НСО3 (реакции карбоксилирования), либо от R-СООН (реакция транскарбоксилирования). Такая реакция необходима:

  • при синтезе оксалоацетата – биотин находится в составе пируваткарбоксилазы, что обеспечивает поддержание активности цикла трикарбоновых кислот и глюконеогенеза,
  • в синтезе жирных кислот – биотин находится в составе ацетил-SКоА-карбоксилазы, ключевого фермента синтеза,
  • на последних стадиях утилизации разветвленных углеродных цепей валина, лейцина, изолейцина (катаболизм Вал, Лей, Иле), треонина, метионина, боковой цепи холестерола и некоторых жирных кислот, в которых образуется пропионил-SKoA.  Витамин находится в составе пропионил-SКоА-карбоксилазы, образующей метилмалонил-SКоА.
Пример реакции карбоксилирования с участием биотина

В дальнейшем метилмалонил-SКоА метаболизирует в реакции изомеризации с участием витамина B12.

Гиповитаминоз H

Причина

Дисбактериоз и комплексное нарушение поступления витаминов, например, при длительном парентеральном питании. В эксперименте может быть вызван потреблением больших количеств сырых яиц (12 штук в день) в течение длительного времени (2 недели), т.к. в них содержится гликопротеин

авидин – антивитамин, связывающий биотин в ЖКТ и препятствующий его всасыванию.

Клиническая картина

У человека практически не встречается. В эксперименте обнаруживаются дерматиты, выделение жира сальными железами кожи (себорея), поражение ногтей, выпадение волос, анемия, анорексия, депрессия, усталость, сонливость.

biokhimija.ru

ВИТАМИНЫ, РАСТВОРИМЫЕ В ВОДЕ. Биотин (витамин Н). «БИОЛОГИЧЕСКАЯ ХИМИЯ», Березов Т.Т., Коровкин Б.Ф.

В 1916 г. в опытах на животных было показано токсичное действие сырого яичного белка; употребление печени или дрожжей снимало этот эффект. Фактор, предотвращающий развитие токсикоза, был назван

витамином Н. Позже было установлено, что в дрожжевом экстракте печени и желтке куриного яйца содержится пищевой фактор, отличный от всех других известных к этому времени витаминов. Этот фактор стимулирует рост дрожжей и азотфиксирующих бактерий Rhizobium, в связи с чем он и получил название «биотин» (от греч. bios – жизнь), или коэнзим R. В 1940 г. было установлено, что все три названия (биотин, витамин Н и коэнзим R) относятся к одному и тому же химически индивидуальному соединению. Выделенное из сырого яичного белка вещество оказалось гликопротеином – белком основного характера, названным
авидином
; этот белок обладает высоким сродством связывания с биотином с образованием нерастворимого в воде комплекса. Комплекс не подвергается расщеплению в пищеварительном тракте, поэтому биотин не всасывается, хотя и содержится в пищевых продуктах.

Биотин был впервые выделен в 1935 г. из яичного желтка. Молекула биотина является циклическим производным мочевины, а боковая цепь представлена валериановой кислотой.

Карбонильная группа биотина связывается амидной связью с ε-амино-группой лизина, образуя ε-N-биотиниллизин (биоцитин), обладающий биологической активностью. Природные сложные белки, содержащие биотин, при попадании в организм подвергаются протеолизу с освобождением свободного биоцитина; последний подвергается гидролизу под действием биоцитиназы печени и сыворотки крови с образованием биотина и лизина.

Клинические проявления недостаточности биотина у человека изучены недостаточно. Это объясняется тем, что бактерии кишечника обладают способностью синтезировать биотин в необходимых количествах. Недостаточность его проявляется в случае употребления большого количества сырого яичного белка или приема сульфаниламидных препаратов и антибиотиков, подавляющих рост бактерий в кишечнике. У человека при недостаточности биотина отмечаются воспалительные процессы кожи (дерматиты), сопровождающиеся усиленной деятельностью сальных желез, выпадением волос, поражением ногтей, часто отмечаются боли в мышцах, усталость, сонливость, депрессия, а также анорексия и анемия. Все эти явления обычно проходят через несколько дней после ежедневного введения биотина. У крыс недостаточность биотина, вызванная введением с пищей сырого яичного белка, вызывает явления острого дерматита, облысение и параличи.

Биологическая роль. Биотин подробно изучен благодаря работам Ф. Линена. Известные к настоящему времени биотиновые ферменты (т.е. ферменты, содержащие в качестве кофермента биотин) катализируют два типа реакций:

1) реакции карбоксилирования (с участием СО2 или НСО3), сопряженные с распадом АТФ

RH + HC03 + ATФ<=> R-COOH +AflO+H3PO4;

2) реакции транскарбоксилирования (протекающие без участия АТФ), при которых субстраты обмениваются карбоксильной группой

R1-COOH + R2H <=> R1H + R2-COOH.

Получены доказательства двустадийного механизма этих реакций с образованием промежуточного комплекса (карбоксибиотинилфермент).

К реакциям первого типа относятся, например, ацетил-КоА- и пируват-карбоксилазные реакции:

C H 3– C O – S — K o A + CO2+ АТФ <=> H O O C – C H 2– C O – K o A + АДФ + Pi.

Пируваткарбоксилаза является высокоспецифичным ферментом, катализирующим уникальную реакцию усвоения СО2 в организме животных. Сущность реакции сводится к пополнению запасов оксалоацетата (щаве-левоуксусная кислота) в лимоннокислом цикле (так называемые «анаплеро-тические», «пополняющие» реакции), т.е. его синтезу из СО2

и пирувата:

Пируват + CO2+ АТФ + H2O —> Оксалоацетат + АДФ + Pi+ 2H+

Реакция протекает в две стадии: на первой стадии, связанной с затратой энергии, СО2 подвергается активированию, т.е. ковалентному связыванию с биотином в активном центре фермента (Е-биотин):

На второй стадии СО2 из комплекса переносится на пируват с образованием оксалоацетата и освобождением фермента:

Примером второго типа реакций является метилмалонил-оксалоацетат-транскарбоксилазная реакция, катализирующая обратимое превращение пировиноградной и щавелевоуксусной кислот:

Реакции карбоксилирования и транскарбоксилирования имеют важное значение в организме при синтезе высших жирных кислот, белков, пури-новых нуклеотидов (соответственно нуклеиновых кислот) и др.

Распространение в природе и суточная потребность. Биотин содержится почти во всех продуктах животного и растительного происхождения, главным образом в связанной форме. Богаты этим витамином печень, почки, молоко, желток яйца. В растительных продуктах (картофель, лук, томат, шпинат) биотин находится как в свободном, гак и в связанном состоянии. Для человека и животных важным источником является биотин, синтезируемый микрофлорой кишечника. Суточная потребность взрослого человека в биотине приблизительно 0,25 мг.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ

Еще по теме:

www.xumuk.ru

Витамин Н

Биотин (витамин Н)

Химическое строение и свойства. Биотин был выделен в 1935 г. из яичного желтка. Свое название витамин получил от греч. bios — жизнь из-за его способности стимулировать рост дрожжей и бактерий. Молекула витамина Н состоит из имидазольного и тетрагидротио-фенового колец, боковая цепь представлена валериановой кислотой. N1 -имидазольного кольца является местом карбоксилирования. Связьваясь с ионом гидрокарбонаа (НСО3), биотин становится коферментом, называемым карбоксибиотином.

Биотин плохо растворяется в воде, но хорошо в спирте. Он устойчив при нагревании и в растворах слабых шел очей и оснований. Биотин способен образовывать с авидином — гликопротеином белка куриного яйца — прочный комплекс, который не может расщепляться пищеварительными ферментами. Поэтому при частом употреблении сырых яиц прекращается всасывание присутствующего в пище биотина. Способность молекул авидина и биотина специфически связываться друг с другом используется в некоторых методах очистки в биотехнологии. Метаболизм. С растительной пищей витамин Н поступает преимущественно в свободном состоянии. Биотин животной пиши освобождается гидролазами от связи с различными белками и в свободном всасывается в тонком кишечнике. В кровяном русле биотин переносится альбумином и аккумулируется главным образом в печени. В тканях биотин находится в виде карбоксибиотинил-ферментов: СОО-группа валериановой кислоты карбоксибиотина ковалентно присоединена карбамидной связью к £-Nh3-группе лизина, входящего в состав активного центра биотин зависимого фермента. Выводится биотин в свободном виде с мочой и экскрементами, причем с последними его выводится больше, чем поступает с пищей. Объясняется это способностью микрофлоры кишечника синтезировать биотин.

Биохимические функции витамина H

Биохимические функции. Витамин Н способствует усвоению тканями ионов бикарбоната (но не С02) и активирует реакции карбоксилирования и транскарбоксилирования в составе следующих карбосибиотинил-ферментов: — Пируваткарбоксилазы — фермента, катализирующего АТФ-зависимое образование оксалацетата из пирувата и НСО3.

Пируваткарбоксилаза является тетрамtрным белком, несущим четыре молекулы биотина, каждая из которых связана с остатком лизина апофермента. Пируваткарбоксилазная реакция является наиболее важной анаплеротической реакцией, особенно в печени и почках (к анаплеротическим относятся возмещающие, пополняющие, реакции). Так, пируваткарбоксилаза восполняет запас оксалацетата, необходимый для функционирования цикла Кребса. Пируваткарбоксилаза является важным митохондриальным ферментом глюконеогенеза (новообразования глюкозы). — Ацетил — КоА-карбоксилазы — первого фермента в реакциях биосинтеза жирных кислот. Активная форма энзима представляет собой множество длинных мономерных нитей. При ферментативном катализе отдается карбоксильная группа бикарбонат; ацетил-коэнзиму А с образованием малонил-КоА:

— Пропионил -КоА -карбоксилазы — фермента, участвующего в окислении жирных кислот с нечетным числом атомов углерода. При этом происходит стереоспецифический перенос активированной карбоксильной группы от карбоксибиотина к пропионил-КоА образованием метилмалонил-КоЛ:

Следует отметить, что ион бикарбоната может утилизироваться клеткой без участия биотина, как, например, это имеет место в каромоилфосфатсинтетазной реакции при синтезе пиримидинов:

— бэта-метилкротоноил-КоА –карбоксилазы – фермента участвующего в реакциях окислительного распада лейцина. — Метилмалонил-ЩУК-транскарбоксилазы — фермента, катализирующего реакцию транскарбоксилирования, а именно, обратимое превращение пирувата и оксалацетата (другие транскарбоксилазные реакции также протекают с участием биотина):

Гиповитаминоз H

Гиповитаминоз. Биотиновый гиповитаминоз проявляется дерматитом, жирной себореей, алопецией (очаговым облысением), сонливостью, усталостью. Часто отмечаются боли в мышцах. Врожденные нарушения обмена биотина. Наиболее часто встречаются нарушения, связанные с дефектом пропионил-КоА-карбоксилазы и бэта-метилкротоноил — КоА -карбоксилазы. При врожденном дефекте пропионил-КоА-карбоксилазы в первые недели жизни ребенка отмечается

кетоацидоз, приступы которого провоцируются кормлением (белком пищи). Приступы сопровождаются частой рвотой, мышечной слабостью, гипотонией, сонливостью, обезвоживанием организма и заканчиваются в большинстве летальным исходом. При биохимическом исследовании в крови обнаруживается повышенная концентрация пропионовои кислоты, в моче выявляются длинноцепочечные кетоны. Избыточное накопление в тканях пропионовой кислоты приводит к тому, что она включается в биосинтез жирных кислот (вместо ацетил-КоА), при этом образуются аномальные жирные кислоты с нечетным числом углеродных атомов. Накапливаясь в фосфолипидах мозга, такие жирные кислоты вызывают тяжелые нейрологичсские нарушения. Угнетение активности бэта-метилкротоноил-КоА-карбоксилазы приводит к нарушению распада лейцина на стадии карбоксилирования бэта-метилкротонил-КоА. При этом врожденном нарушении развивается метаболический кетоацидоз. Из-за экскреции аномальных продуктов превращения бэта-метилкротоноил-КоА моча приобретает своеобразный запах, напоминающий запах кошачьей мочи. Проявляется заболевание неукротимой рвотой, не прекращающейся после перехода больного на низкобелковую диету. Состояние улучшается после приема больших доз биотина.

Суточная потребность в витамине H

Пищевые источники. Биотин синтезируется микрофлорой кишечника человека. Это в значительной мере удовлетворяет потребности организма в биотине. К гиповитаминозному состоянию может привести прием антибиотиков и лечение цитостатиками. Суточная потребность точно не определена, вероятнее всего она составляет 150—200 мкг. Витамином Н богаты бобовые, а также цветная капуста, грибы; из продуктов животного происхождения — печень, почки, молоко, яичный желток.

Витамин Д (кальциферол). Антирахитический витамин

Химическое строение и свойства. В 1936 г. А. Виндаусом из рыбьего жира был выделен препарат, излечивающий рахит. Он был назван витамином Д3, так как ранее А. Гессом и М. Вейнштоком из растительных масел был выделен эргостерин, получивший название витамин Д1. При воздействии на витамин Д1, УФ-лучей образовывалось излечивающее рахит соединение — витамин Д2, эр го кальциферол (кальциферол означает несущий кальций). В растениях при УФ-облучении синтезируются и другие витамеры эргостерина (Д4-7). Наиболее важным из группы витаминов Д является витамин Д3 — холекальциферол. Холекальциферол образуется в качестве промежуточного продукта при биосинтезе холестсрола (из 7-дегидрохолестерола) в клетках кожи человека под влиянием УФ-лучей.

Биохимические функции витамина Д

Витамин Д3 можно рассматривать как прогормон, так как он превращается в 1,25(ОН)2-Д3 действующий аналогично стероидным гормонам. Так, проникая в клетки-мишени, он связывается с белковыми рецепторами, которые мигрируют в ядро клетки. энтероцитах этот гормон-рецепторный комплекс стимулирует транскрипцию и РНК, несущую информацию на синтез белка-переносчика ионов кальция. Вероятно, витамин отвечает также за синтез Са2+-АТФ-азы в разных клетках. В кишечнике всасывание кальция осуществляется как путем облегченной диффузии (с участием кальцийсвязывающего белка), так и путем активного транспорта (с помощью Са2+-АТФ-азы). Одноврменно ускоряется и всасывание фосфора. В костной ткани 1,25(ОН)2-Д3 стимулирует процесс деминерализации (синергично с паратирином). В почках активация витамином 125(ОН)2-Д3, кальциевой АТФ-азы мембран почечных канальцев приводит к увеличению реабсорбции ионов кальция; возрастает и реабеорбция фосфатов. Кальцитриол принимает участие в регуляции роста и дифференцировке клеток костного мозга. Он обладает антиоксидантным и антиканцерогенным действием.

Оценка обеспеченности организма витамином Д

Оценка обеспеченности организма витамином Д. Обеспеченность организма витамином Д оценивается на основании определения активных форм витамина Д в крови и тканях методом радиоконкурентного анализа; содержания кальция, фосфора и активности щелочной фосфатазы в сыворотке крови; уровня экскреции с мочой фосфатов. Применяются также нагрузочные пробы с приемом фиксированных доз кальция при парентеральном введении с последующим определением содержания кальция в крови и сто экскреции с мочой. Суточная потребность. Пищевые источники. Витамин Д, содержится исключительно в животной пище. Особенно богат им рыбий жир. Содержится он в печени, желтке яиц. В растительных маслах и молоке присутствует витамин Д2. Много его в дрожжах. Биологически он менее активен. Суточная потребность для детей колеблется от 10 до 25 мкг (500— 1000 ME), у взрослых она меньше.

Гиповитаминоз и Гипервитаминоз при нехватке витамина Д

На схеме ниже показано угнетение (пунктирная стрелка) всасывания, снижение поступления кальция в кость и уменьшение экскреции кальция при недостатке витамина Д. Одновременно в ответ на гипокальциемию секретируется паратирин и увеличивается (сплошная стрелка) поступление кальция из кости в кровяное русло (вторичный гиперпаратиреоидизм).

studfile.net

6. Биотин (витамин н, антисеборрейный витамин)

В основе строения биотина лежит тиофеновое кольцо, к которому присоединена молекула мочевины, а боковая цепь представлена валерьяновой кислотой.

Особенностью биотина является его ковалентное присоединение к активному центру фермента. Молекула кофермента содержит реакционноактивный атом азота.

  • Источники: почти во всех продуктах животного и растительного происхождения — печень, почки, молоко, желток яйца. В обычных условиях человек получает достаточное количество биотина в результате бактериального синтеза в кишечнике.

  • Суточная потребность: 150-200 мкг.

Биологическая роль: коферментная функция в составе карбоксилаз: участвует в активировании и переносе одноуглеродных групп с максимальной степенью окисления (СО2).

Кофермент биоцитин образуется при взаимодействии биотина с Е-аминогруппой лизина апофермента. Активный СО2 связан с коферментом биоцитином.

Биотин после всасывания поступает в кровь и переносится альбумином преимущественно в печень, аккумулируется в митохондриях.

1.Анаплеротическая роль биотина (анаплероз – процессвозмещения резервов): пируваткарбоксилазная реакция, в которой образуется оксалоацетат (щавелевоуксусная кислота/ЩУК) из пирувата под влиянием пируваткарбоксилазы. Пируваткарбоксилаза восполняет запас оксалоацетата, необходимого для функционирования цикла Кребса.

СН3-СО-СООН (пируват) + АТФ + НСО3 ————

СООН-СН2-СО-СООН (ЩУК) + АДФ + РО32-

Образование оксалоацетата начинает новый путь глюконеогенеза (синтеза глюкозы из неуглеводных предшественников, например, из аминокислот после их дезаминирования).

2.Роль биотина в синтезе жирных кислот. Первая реакция пути синтеза жирных кислот: преобразование ацетил-КоА в малонил-КоА (карбоксилированный ацетил), реакцию катализирует ацетил-КоА-карбоксилаза:

3.Роль биотина в окислении жирных кислот с нечетным числом атомов углерода: при их расщеплении на последней стадии бета-окисления образуется не ацетил-КоА, а трехуглеродный пропионил-КоА, который превращается в сукцинил-КоА (НООС-СН2-СН2 ~ SCoA) и включается в цикл Кребса, где подвергается полному окислению. Этот процесс состоит из трех ферментативных реакций, первая – катализируется биотинсодержащим ферментом (при нарушении биохимического процесса может развиться смертельно опасный ацидоз, возникнуть тяжелые неврологические нарушения).

4.Роль биотина в окислении аминокислот. Путь окислительного распада лейцина включает реакцию карбоксилирования под влиянием биотинсодержащего фермента бета-метилкротонил-КоА-карбоксилазы, снижение активности которого ведет к нарушению распада лейцина и вызывает метаболический кетоацидоз; для лечения применяют большие дозы биотина.

5.Роль биотина в реакциях транскарбоксилирования. Катализируется биотнсодержащим ферментом – метилмалонил-оксалоацетат-транскарбоксилазой (МОТ), другие транскарбоксилазы также содержат биотин в активном центре.

Значение состоит в образовании оксалоацетата (ЩУК) для пополнения его митохондриального резерва. Особенность в том, что не требуется АТФ.

Клинические проявления недостаточности. Бак­терии кишечника синтезируют этот витамин в необходимых количествах. Проявляется при дисбактериозах кишечника, например, после приёма больших количеств антибиотиков или сульфамидных препаратов, вызывающих гибель микрофлоры кишечни­ка, либо после введения в рацион большого количества сырого яичного белка, содержащего гликопротеин авидин, ко­торый соединяется с биотином и препятству­ет всасыванию последнего из кишечника. При недостаточности биотина развиваются явления специфического дерматита, характеризующегося покраснением и шелушением кожи, а также обильной секрецией сальных желёз (себорея). При авитаминозе витамина Н наблюдают также выпадение волос и шерсти у животных, поражение ногтей, часто отмечают боли в мышцах, усталость, сонливость и депрессию.

studfile.net

16. Роль биотина в метаболизме

Биоти́н (витамин Н, витамин B7, кофермент R) — водорастворимый витамин группы В. Молекула биотина состоит из тетрагидроимидазольного и тетрагидротиофенового кольца, в тетрагидротиофеновом кольце один из атомов водорода замещен на валериановую кислоту. Биотин является кофактором в метаболизме жирных кислот, лейцина и в процессе глюконеогенеза.

Входит в состав ферментов, регулирующих белковый и жировой обмен, обладает высокой активностью. Участвует в синтезе глюкокиназы — фермента, регулирующего обмен сахаров.

Является коферментом различных ферментов, в том числе и транскарбоксилаз. Участвует в синтезе пуриновых нуклеотидов. Является источником серы, которая принимает участие в синтезе коллагена. С участием биотина протекают реакции активирования и переноса СО2.

По последним данным, биотин играет важную роль в углеводном обмене, взаимодействуя с гормоном поджелудочной железы инсулином. Кроме того, биотин участвует в производстве так называемой глюкокиназы — вещества, которое «запускает» обмен глюкозы.

Глюкокиназа вырабатывается в печени, там же, где хранится биотин. Это особенно важно для диабетиков, у которых содержание глюкокиназы в печени понижено. Немалую роль играет биотин и в синтезе гликогенов — накапливаемых в печени и мышцах углеводов, а также в усвоении этих запасов и в так называемом глюконеогенезе, в процессе которого 16 из 22 аминокислот преобразуются в глюкозу. Этот процесс исключительно важен для поддержания стабильного уровня сахара в крови. Таким образом биотин стабилизирует содержание сахара в крови.

Он помогает также усваивать белок и в обмене веществ является важным союзником других витаминов группы В, таких как фолиевая и пантотеновая кислоты и витамин В12. Кроме того, он участвует в разложении жирных кислот и в сжигании жира.

Биотин зарекомендовал себя как идеальное транспортное средство, которое всегда доставляет свой груз серы строго по назначению.

Поскольку биотин контролирует обмен жиров и преимущественно находится в клетках кожи и волос, он, естественно, влияет на содержание жира в коже.

Поскольку биотин оптимизирует использование жирных кислот в организме и делает кожу головы менее маслянистой, он может улучшать общую структуру и внешний вид волос.

Еще одна важная задача биотина заключается в том, чтобы связывать двуокись углерода с пуринами, в которых содержится наследственная информация нашего организма. Он требуется и для синтеза гемоглобина — пигмента красных кровяных телец.

17. Биохимическая функция витамина в12

Витаминами B12 называют группу кобальтсодержащих биологически активных веществ, называемых кобаламинами. К ним относят собственно цианокобаламин — продукт, получаемый при химической очистке витамина цианидами, гидроксикобаламин и две коферментные формы витамина B12: метилкобаламин и 5-дезоксиаденозилкобаламин.

В более узком смысле витамином B12 называют цианокобаламин, так как именно в этой форме в организм человека поступает основное количество витамина B12, не упуская из вида то, что он не синоним с B12 и несколько других соединений также обладают B12 витаминной активностью. Цианокобаламин лишь один из них. Следовательно, цианокобаламин всегда витамин B12, но не всегда витамин B12 является цианокобаламином.

Ковалентная связь C-Co кофермента B12 участвует в двух типах ферментативных реакций:

-Реакции переноса атомов, при которых атом водорода переносится непосредственно с одной группы на другую, при этом замещение происходит по алкильной группе, спиртовому атому кислорода или аминогруппе.

-Реакции переноса метильной группы (-Ch4) между двумя молекулами.

В организме человека есть только два фермента с коферментом B12:

Метилмалонил-КоА-мутаза, фермент, использующий в качестве кофактора аденозилкобаламин и при помощи реакции, упомянутой выше в п.1, катализирует перестановку атомов в углеродном скелете. В результате реакции из L-метилмалонил-КоА получается сукцинил-КоА. Эта реакция является важным звеном в цепи реакций биологического окисления белков и жиров.

5-метилтетрагидрофолат-гомоцистеин-метилтрансфераза, фермент из группы метилтрансфераз, использующий в качестве кофактора метилкобаламин и при помощи реакции, упомянутой выше в п.2, катализирует превращение аминокислоты гомоцистеина в аминокислоту метионин.

studfile.net

Витамины — Биохимия

Что такое витамины?
Гиповитаминозы очень распространены
Витамин А (ретинол, антиксерофтальмический)
Витамин D (кальциферол, антирахитический)
Витамин К (нафтохиноны, антигеморрагический)
Витамин Е (токоферол, антистерильный)
Витамин F (полиненасыщенные жирные кислоты)
Витамин В1 (тиамин, антиневритный)
Витамин В2 (рибофлавин, витамин роста)
Витамин В3 (PP, ниацин, антипеллагрический)
Витамин В5 (пантотеновая кислота)
Витамин В6 (пиридоксин, антидерматитный)
Витамин В9 (Вс, фолиевая кислота, витамин роста)
Витамин В12 (кобаламин, антианемический)
Витамин Н (биотин, антисеборейный)
Витамин С (аскорбиновая кислота, антицинготный)

biokhimija.ru

Витамин H (биотин, антисеборрейный) | Учение.net

Химическое строение и свойства: состоит из имидазольного и тетрагидротиофенового колец, боковая цепь представлена валериановой кислотой. Плохо растворяется в воде, хорошо в спирте. Устойчив при нагревании.

Биотин способен образовывать с авидином – гликопротеином белка  куриного яйца –  прочный комплекс, который не может расщепляться пищеварительными ферментами. Поэтому при частом употреблении сырых яиц прекращается всасывание присутствующего в пище биотина.

Биохимические функции:

Коферментная форма – биотин (карбоксибиотинлизин – в тканях, карбоксибиотин – в крови).

Витамин Н способствует усвоению тканями ионов бикарбоната (но не СО2) и активирует реакции карбоксилирования и транскарбоксилирования в составе следующих карбоксибиотинил-ферментов:

1. Пируваткарбоксилазы – фермента, катализирующего АТФ-зависимое образование

Оксалацетата из пирувата и НСО3- (ключевого митохондриального фермента глюконеогенеза)

Пируват → ЩУК + AДФ + Фн

2. Ацетил-КоА-карбоксилазы – первого фермента в реакциях биосинтеза жирных кислот.

Ацетил-КоА +  АТФ + СО2 + Н2О → малонил-КоА + АДФ + Фн

3. Пропионил-КоА-карбоксилазы – фермента, участвующего в окислении жирных кислот с нечетным числом атомов углерода.

Пропионил-КоА +  АТФ + СО2 + Н2О → метилмалонил-КоА + АДФ + Фн → сукцинил-КоА (в результате изомеризации при участии витамина В12)

Гиповитаминоз.

Проявляется дерматитом,  жирной себореей, алопецией (очаговым облысением), сонливостью, усталостью, болями в мышцах.

Пищевые источники: синтезируется микрофлорой кишечника, это в значительной мере удовлетворяет потребности организма в нем; бобовые,  цветная капуста, грибы, печень, почки, молоко, яичный желток.

Суточная  потребность: 150–200 мкг.

uchenie.net

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *